[BZOJ4802]欧拉函数 题解
题目地址:BZOJ:Problem 4802. — 欧拉函数
题目描述
已知N,求phi(N)
输入输出格式
输入格式:
正整数N。N<=10^18
输出格式:
输出phi(N)
输入输出样例
输入样例#1:
8
输出样例#1:
4
题解
本题需要的数学姿势有:Miller-Rabin素性测试与Pollard’s rho算法 | KSkun’s Blog
我们知道欧拉函数有一种求法是
\varphi(x) = x (1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \cdots (1 - \frac{1}{p_k})
那分解一波质因数就可以求了。数据范围让我们用PR算法。
吐槽:std::abs被卡常了
代码
// Code by KSkun, 2018/4
#include <cstdio>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <algorithm>
#include <vector>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF
: *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
inline LL mul(LL a, LL b, LL p) {
a %= p; b %= p;
LL res = 0;
while(b) {
if(b & 1) {
res += a; res %= p;
}
a <<= 1;
if(a >= p) a %= p;
b >>= 1;
}
return res;
}
inline LL fpow(LL n, LL k, LL p) {
LL res = 1;
for(; k; n = mul(n, n, p), k >>= 1) {
if(k & 1) res = mul(res, n, p);
}
return res;
}
LL T, n;
inline bool miller_rabin(LL x) {
if(x == 2) return true;
LL t = x - 1, cnt2 = 0;
while(!(t & 1)) {
t >>= 1; cnt2++;
}
for(int i = 0; i < 20; i++) {
LL a = rand() % (x - 2) + 2, now, lst;
now = lst = fpow(a, t, x);
for(int j = 1; j <= cnt2; j++) {
now = mul(lst, lst, x);
if(now == 1 && lst != 1 && lst != x - 1) return false;
lst = now;
}
if(now != 1) return false;
}
return true;
}
LL mn;
inline LL gcd(LL a, LL b) {
if(a == 0) return 1;
while(b) {
LL t = a % b; a = b; b = t;
}
return a;
}
inline LL abs(LL x) {
return x < 0 ? -x : x;
}
inline LL pollard_rho(LL x, LL k) {
LL a = rand() % (x - 1) + 1, b = a, t1 = 1, t2 = 2;
for(;;) {
t1++;
a = (mul(a, a, x) + k) % x;
LL g = gcd(abs(b - a), x);
if(g > 1 && g < x) return g;
if(b == a) return x;
if(t1 == t2) {
b = a;
t2 <<= 1;
}
}
}
std::vector<LL> divi;
inline void caldivisor(LL x) {
if(x == 1) return;
if(miller_rabin(x)) {
divi.push_back(x);
return;
}
LL p = x;
while(p >= x) p = pollard_rho(x, rand() % (x - 1) + 1);
caldivisor(p);
caldivisor(x / p);
}
LL N;
int main() {
srand(time(NULL));
N = readint();
if(N == 1) {
puts("1"); return 0;
}
if(miller_rabin(N)) {
printf("%lld", N - 1); return 0;
}
caldivisor(N);
std::sort(divi.begin(), divi.end());
divi.erase(std::unique(divi.begin(), divi.end()), divi.end());
LL phi = N;
for(int i = 0; i < divi.size(); i++) {
phi /= divi[i];
phi *= divi[i] - 1;
}
printf("%lld", phi);
return 0;
}