[SPOJ-COT]Count on a tree 题解
题目地址:洛谷:【SP10628】COT – Count on a tree – 洛谷、SPOJ:SPOJ.com – Problem COT、BZOJ:Problem 2588. — Spoj 10628. Count on a tree
题目描述
You are given a tree with N nodes. The tree nodes are numbered from 1 to N. Each node has an integer weight.
We will ask you to perform the following operation:
u v k
: ask for the kth minimum weight on the path from node u to node v
给你一棵带点权的树,每次询问求u到v路径上的k小权值。
输入输出格式
输入格式:
In the first line there are two integers N and M. (N, M <= 100000)
In the second line there are N integers. The ith integer denotes the weight of the ith node.
In the next N-1 lines, each line contains two integers u v, which describes an edge (u, v).
In the next M lines, each line contains three integers u v k, which means an operation asking for the kth minimum weight on the path from node u to node v.
输出格式:
For each operation, print its result.
输入输出样例
输入样例#1:
8 5 105 2 9 3 8 5 7 7 1 2 1 3 1 4 3 5 3 6 3 7 4 8 2 5 1 2 5 2 2 5 3 2 5 4 7 8 2
输出样例#1:
2 8 9 105 7
题解
这是一个主席树的题目。考虑每个点建一个权值线段树,维护从根到该点的路径权值。DFS一遍,对于一个点,从其父亲处插入该点的权值。权值需要离散化处理一下。直接钦点1为树根也行。询问的时候,查询该点LCA,查询时路径上的答案为u+v-lca-fa[lca],考虑像区间k小值那样,四个线段树一起跑。这里我的LCA是倍增写法。
代码
// Code by KSkun, 2018/2
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
char c = fgc();
while (c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while (c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005;
int n, m, w[MAXN], ut, vt, kt;
std::vector<int> gra[MAXN];
int tmp[MAXN], tsiz;
// seg tree
struct Node {
int lch, rch, val;
} tree[MAXN << 5];
int tot = 0, rt[MAXN];
inline void insert(int &o, int l, int r, int x) {
tree[++tot] = tree[o];
o = tot;
tree[o].val++;
if(l == r) return;
int mid = (l + r) >> 1;
if(x <= mid) insert(tree[o].lch, l, mid, x);
else insert(tree[o].rch, mid + 1, r, x);
}
inline int query(int lo, int ro, int fo, int ffo, int l, int r, int k) {
if(l == r) return l;
int mid = (l + r) >> 1;
int num = tree[tree[lo].lch].val + tree[tree[ro].lch].val - tree[tree[fo].lch].val - tree[tree[ffo].lch].val;
if(k <= num) return query(tree[lo].lch, tree[ro].lch, tree[fo].lch, tree[ffo].lch, l, mid, k);
else return query(tree[lo].rch, tree[ro].rch, tree[fo].rch, tree[ffo].rch, mid + 1, r, k - num);
}
// lca
int l2n, dep[MAXN], anc[MAXN][20];
void dfs(int u) {
rt[u] = rt[anc[u][0]];
insert(rt[u], 1, tsiz, w[u]);
for(int i = 0; i < gra[u].size(); i++) {
int v = gra[u][i];
if(v == anc[u][0]) {
continue;
}
dep[v] = dep[u] + 1;
anc[v][0] = u;
dfs(v);
}
}
inline void init() {
for(int j = 1; (1 << j) <= n; j++) {
for(int i = 1; i <= n; i++) {
anc[i][j] = anc[anc[i][j - 1]][j - 1];
}
}
}
inline int lca(int a, int b) {
if(dep[a] > dep[b]) std::swap(a, b);
int del = dep[b] - dep[a];
for(int i = 0; (1 << i) <= del; i++) {
if((1 << i) & del) b = anc[b][i];
}
if(a != b) {
for(int i = l2n; i >= 0; i--) {
if(anc[a][i] != anc[b][i]) {
a = anc[a][i];
b = anc[b][i];
}
}
return anc[a][0];
} else {
return a;
}
}
int main() {
n = readint();
m = readint();
l2n = log(n) / log(2);
for(int i = 1; i <= n; i++) {
tmp[i] = w[i] = readint();
}
std::sort(tmp + 1, tmp + n + 1);
tsiz = std::unique(tmp + 1, tmp + n + 1) - tmp - 1;
for(int i = 1; i <= n; i++) {
w[i] = std::lower_bound(tmp + 1, tmp + tsiz + 1, w[i]) - tmp;
}
for(int i = 1; i <= n - 1; i++) {
ut = readint();
vt = readint();
gra[ut].push_back(vt);
gra[vt].push_back(ut);
}
dfs(1);
init();
while(m--) {
ut = readint();
vt = readint();
kt = readint();
int lcat = lca(ut, vt);
printf("%d\n", tmp[query(rt[ut], rt[vt], rt[lcat], rt[anc[lcat][0]], 1, tsiz, kt)]);
}
return 0;
}