[ZJOI2007]矩阵游戏 题解

[ZJOI2007]矩阵游戏 题解

题目地址:洛谷:【P1129】[ZJOI2007]矩阵游戏 – 洛谷、BZOJ:Problem 1059. — [ZJOI2007]矩阵游戏

题目描述

小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏。矩阵游戏在一个N*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:
行交换操作:选择矩阵的任意两行,交换这两行(即交换对应格子的颜色)
列交换操作:选择矩阵的任意两列,交换这两列(即交换对应格子的颜色)
游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑色。
对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程序来判断这些关卡是否有解。

输入输出格式

输入格式:
第一行包含一个整数T,表示数据的组数。
接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。

输出格式:
包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。

输入输出样例

输入样例#1:

2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0

输出样例#1:

No
Yes

说明

对于20%的数据,N ≤ 7
对于50%的数据,N ≤ 50
对于100%的数据,N ≤ 200

题解

我们可以把任意行移动到任意位置,因此我们对于每个黑点,从该行的点向黑点所在的列连边,这个边表示如果将该行移动到该列对应的行,就可以让这个黑点在对角线上,然后对图跑二分图匹配,只要二分图匹配能匹配满n个,则说明有可行解。

代码

// Code by KSkun, 2018/5
#include <cstdio>
#include <cctype>
#include <cstring>

#include <algorithm>
#include <vector>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    register char c = fgc();
    while(!isdigit(c)) {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(isdigit(c)) {
        res = (res << 1) + (res << 3) + c - '0';
        c = fgc();
    }
    return res * neg;
}

const int MAXN = 405;

int n;

std::vector<int> gra[MAXN];

bool vis[MAXN];
int match[MAXN];

inline bool dfs(int u) {
    for(int i = 0; i < gra[u].size(); i++) {
        int v = gra[u][i];
        if(!vis[v]) {
            vis[v] = true;
            if(match[v] == -1 || dfs(match[v])) {
                match[v] = u; match[u] = v; return true;
            }
        }
    }
    return false;
}

inline int bmatch() {
    int res = 0;
    memset(match, -1, sizeof(match));
    for(int i = 1; i <= 2 * n; i++) {
        if(match[i] == -1) {
            memset(vis, 0, sizeof(vis));
            if(dfs(i)) res++;
        }
    }
    return res;
}

int T;

int main() {
    T = readint();
    while(T--) {
        n = readint();
        for(int i = 1; i <= 2 * n; i++) {
            gra[i].clear();
        }
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                if(readint()) gra[i].push_back(j + n);
            }
        }
        if(bmatch() >= n) puts("Yes"); else puts("No");
    }
    return 0;
}


发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据