数学笔记:矩阵、行列式
矩阵(Matrix)
一个m \times n的矩阵是一个由m行n列元素排列成的矩形阵列。元素可以是数字、符号或数学式。
矩阵的基本运算
加(减)法
m \times n矩阵\mathbf{A}和\mathbf{B}的和(差):\mathbf{A} \pm \mathbf{B}为一个m \times n矩阵,其中每个元素是A和B相应元素的和(差),也就是说 (\mathbf{A} \pm \mathbf{B})_{i, j} = \mathbf{A}_{i, j} \pm \mathbf{B}_{i, j} 。
数乘
标量c与矩阵\mathbf{A}的数乘:c\mathbf{A}的每个元素是A的相应元素与c的乘积,也就是说 (c\mathbf{A})_{i, j} = c \cdot \mathbf{A}_{i, j} 。
转置
m \times n矩阵\mathbf{A}的转置是一个n \times m的矩阵,记为\mathbf{A}^T,其中的第i个行矢量是原矩阵\mathbf{A}的第i个列矢量;或者说, (\mathbf{A}^T)_{i, j} = \mathbf{A}_{j, i} 。
运算律
矩阵的加法运算满足交换律:\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}
矩阵的转置和数乘运算对加法满足分配率: (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T ; c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}
转置和数乘运算满足类似于结合律的规律: c(\mathbf{A}^T) = (c\mathbf{A}^T)
矩阵乘法
两个矩阵的乘法仅当第一个矩阵\mathbf{A}的列数和另一个矩阵\mathbf{B}的行数相等时才能定义。如\mathbf{A}是m \times n矩阵和\mathbf{B}是n \times p矩阵,它们的乘积\mathbf{AB}是一个m \times p矩阵,且
(\mathbf{AB})_{i, j} = \sum_{r=1}^n \mathbf{A}_{i, r} \mathbf{B}_{r, j}
运算律:
– 结合律: (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})
– 左分配律: (\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}
– 右分配律: \mathbf{C}(\mathbf{A} + \mathbf{B}) = \mathbf{CA} + \mathbf{CB}
– c(\mathbf{AB}) = (c\mathbf{A})\mathbf{B} = \mathbf{A}(c\mathbf{B})
– (\mathbf{AB})^T = \mathbf{B}^T\mathbf{A}^T
– 不满足交换律。\mathbf{AB}存在,\mathbf{BA}不一定存在。即使存在,也可能\mathbf{AB} \neq \mathbf{BA}。
单位矩阵(Identity matrix)
n阶单位矩阵,是一个n \times n的方形矩阵,其主对角线元素为1,其余元素为0,记作\mathbf{I}_n或者\mathbf{E}_n,阶数可以省略。
\begin{aligned} \mathbf{I}_1 &= \begin{bmatrix} 1 \end{bmatrix} \\ \mathbf{I}_2 &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \mathbf{I}_3 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \cdots \\ \mathbf{I}_n &= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \end{aligned}
行列式(Determinant)
记法:矩阵\mathbf{A}的行列式可以记作|\mathbf{A}|或\mathrm{det}(\mathbf{A})。也可以直观地把矩阵的方括号换成垂直线表示。
直观定义:参见行列式 – 维基百科,自由的百科全书。
2阶矩阵的行列式:\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
3阶矩阵的行列式:主对角线乘积之和减副对角线元素乘积之和
几何意义:行向量/列向量张成的体积/面积。
更多内容参见行列式 – 维基百科,自由的百科全书。
范德蒙矩阵(Vandermonde matrix)
范德蒙矩阵是一个各列呈现出几何级数关系的矩阵,例如
\mathbf{V} = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \cdots & \alpha_m^{n-1} \end{bmatrix}
或者表达为\mathbf{V}_{i, j} = \alpha_i^{j-1}。
n阶范德蒙矩阵的行列式可以表示为:
\mathrm{det}(\mathbf{V}) = \prod_{1 \leq i < j \leq n}(\alpha_j - \alpha_i)
当\alpha_i各不相同时,\mathrm{det}(\mathbf{V})不为零。