[SPOJ-QTREE2]Query on a tree II 题解
题目地址:洛谷:【SP913】QTREE2 – Query on a tree II – 洛谷、SPOJ:SPOJ.com – Problem QTREE2
SPOJ QTREE系列:
- [SPOJ-QTREE]Query on a tree 题解(树链剖分)
- [SPOJ-QTREE2]Query on a tree II 题解(树链剖分)
- [SPOJ-PT07J]Query on a tree III 题解(主席树)
- [SPOJ-QTREE3]Query on a tree again! 题解(树链剖分)
- [SPOJ-QTREE4]Query on a tree IV 题解(点分治/边分治)
- [SPOJ-QTREE5]Query on a tree V 题解(边分治)
- [SPOJ-QTREE6]Query on a tree VI 题解(LCT)
- [SPOJ-QTREE7]Query on a tree VII 题解(LCT)
题目描述
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3…N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
- DIST a b : ask for the distance between node a and node b
- KTH a b k : ask for the k-th node on the path from node a to node b
给一棵带边权的树,操作1.询问两点路径长2.求两点有向路径上第k点。
输入输出格式
输入格式:
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000)
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
- The next lines contain instructions “DIST a b” or “KTH a b k”
- The end of each test case is signified by the string “DONE”.
There is one blank line between successive tests.
输出格式:
For each “DIST” or “KTH” operation, write one integer representing its result.
Print one blank line after each test.
输入输出样例
输入样例#1:
1 6 1 2 1 2 4 1 2 5 2 1 3 1 3 6 2 DIST 4 6 KTH 4 6 4 DONE
输出样例#1:
5 3
题解
求和同QTREE:[SPOJ-QTREE]Query on a tree 题解 | KSkun’s Blog。查k点可以考虑算一下LCA到两个儿子的距离,看看这个点在哪条链上,然后再换算成底端往上第几个点,沿重链上跳,利用DFS序算出来即可。
代码
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
inline bool isop(char c) {
return c == 'I' || c == 'H' || c == 'O';
}
inline char readop() {
register char c;
while(!isop(c = fgc()));
return c;
}
const int MAXN = 10005;
struct Edge {
int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
int T, n, m, ut, vt, wt, kt;
char op;
int w[MAXN], fa[MAXN], siz[MAXN], son[MAXN], dfn[MAXN], ptn[MAXN], top[MAXN], dep[MAXN], cnt;
inline void dfs1(int u) {
siz[u] = 1;
son[u] = 0;
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
w[v] = gra[i].w;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++cnt;
ptn[dfn[u]] = u;
if(son[u]) dfs2(son[u], tp);
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
LL sgt[MAXN << 2];
inline void build(int o, int l, int r) {
if(l == r) {
sgt[o] = w[ptn[l]];
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
build(lch, l, mid);
build(rch, mid + 1, r);
sgt[o] = sgt[lch] + sgt[rch];
}
inline void modify(int o, int l, int r, int x, int v) {
if(l == r) {
sgt[o] = v;
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
if(x <= mid) modify(lch, l, mid, x, v);
else modify(rch, mid + 1, r, x, v);
sgt[o] = sgt[lch] + sgt[rch];
}
inline LL query(int o, int l, int r, int ll, int rr) {
if(l >= ll && r <= rr) {
return sgt[o];
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
register LL res = 0;
if(ll <= mid) res += query(lch, l, mid, ll, rr);
if(rr > mid) res += query(rch, mid + 1, r, ll, rr);
return res;
}
inline LL querysum(int u, int v) {
int tu = top[u], tv = top[v];
register LL res = 0;
while(tu != tv) {
if(dep[tu] > dep[tv]) {
std::swap(u, v);
std::swap(tu, tv);
}
res += query(1, 1, n, dfn[tv], dfn[v]);
v = fa[tv];
tv = top[v];
}
if(dep[u] > dep[v]) std::swap(u, v);
if(u != v) res += query(1, 1, n, dfn[u] + 1, dfn[v]);
return res;
}
inline int querylca(int u, int v) {
int tu = top[u], tv = top[v];
while(tu != tv) {
if(dep[tu] > dep[tv]) {
std::swap(u, v);
std::swap(tu, tv);
}
v = fa[tv];
tv = top[v];
}
if(dep[u] > dep[v]) std::swap(u, v);
return u;
}
inline int querykth(int u, int v, int k) {
int lca = querylca(u, v), tu = top[u], tv = top[v];
if(dep[u] - dep[lca] + 1 >= k) {
while(dep[tu] > dep[lca]) {
if(dep[u] - dep[tu] + 1 >= k) break;
k -= dep[u] - dep[tu] + 1;
u = fa[tu];
tu = top[u];
}
return ptn[dfn[u] - k + 1];
} else {
k -= dep[u] - dep[lca] + 1;
k = dep[v] - dep[lca] - k + 1;
while(dep[tv] > dep[lca]) {
if(dep[v] - dep[tv] + 1 >= k) break;
k -= dep[v] - dep[tv] + 1;
v = fa[tv];
tv = top[v];
}
return ptn[dfn[v] - k + 1];
}
}
inline void addedge(int u, int v, int w) {
gra[++tot] = Edge {v, w, head[u]};
head[u] = tot;
}
int main() {
T = readint();
while(T--) {
tot = cnt = 0;
memset(head, 0, sizeof(head));
n = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint(); wt = readint();
addedge(ut, vt, wt);
addedge(vt, ut, wt);
}
dfs1(1);
dfs2(1, 1);
build(1, 1, n);
for(;;) {
op = readop();
if(op == 'O') break;
ut = readint();
vt = readint();
if(op == 'I') {
printf("%lld\n", querysum(ut, vt));
} else {
kt = readint();
printf("%d\n", querykth(ut, vt, kt));
}
}
printf("\n");
}
return 0;
}