[SPOJ-QTREE3]Query on a tree again! 题解
题目地址:SPOJ:SPOJ.com – Problem QTREE3
SPOJ QTREE系列:
- [SPOJ-QTREE]Query on a tree 题解(树链剖分)
- [SPOJ-QTREE2]Query on a tree II 题解(树链剖分)
- [SPOJ-PT07J]Query on a tree III 题解(主席树)
- [SPOJ-QTREE3]Query on a tree again! 题解(树链剖分)
- [SPOJ-QTREE4]Query on a tree IV 题解(点分治/边分治)
- [SPOJ-QTREE5]Query on a tree V 题解(边分治)
- [SPOJ-QTREE6]Query on a tree VI 题解(LCT)
- [SPOJ-QTREE7]Query on a tree VII 题解(LCT)
题目描述
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N. In the start, the color of any node in the tree is white.
We will ask you to perfrom some instructions of the following form:
- 0 i : change the color of the i-th node (from white to black, or from black to white);
or - 1 v : ask for the id of the first black node on the path from node 1 to node v. if it doesn’t exist, you may return -1 as its result.
给一棵树,初始点全是白色,操作1.更改点的颜色(白->黑,黑->白)2.求1~v路径上第一个为黑色的点,不存在输出-1。
输入输出格式
输入格式:
In the first line there are two integers N and Q.
In the next N-1 lines describe the edges in the tree: a line with two integers a b denotes an edge between a and b.
The next Q lines contain instructions “0 i” or “1 v” (1 ≤ i, v ≤ N).
输出格式:
For each “1 v” operation, write one integer representing its result.
输入输出样例
输入样例#1:
9 8 1 2 1 3 2 4 2 9 5 9 7 9 8 9 6 8 1 3 0 8 1 6 1 7 0 2 1 9 0 2 1 9
输出样例#1:
-1 8 -1 2 -1
说明
There are 12 real input files.
For 1/3 of the test cases, N=5000, Q=400000.
For 1/3 of the test cases, N=10000, Q=300000.
For 1/3 of the test cases, N=100000, Q=100000.
题解
线段树存一段上深度最小的黑色点的编号。直接查即可。
代码
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
int n, q, ut, vt, op;
int fa[MAXN], siz[MAXN], son[MAXN], dfn[MAXN], ptn[MAXN], top[MAXN], dep[MAXN], cnt, col[MAXN];
inline void dfs1(int u) {
siz[u] = 1;
son[u] = 0;
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++cnt;
ptn[dfn[u]] = u;
if(son[u]) dfs2(son[u], tp);
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
int sgt[MAXN << 2];
inline void modify(int o, int l, int r, int x, int v) {
if(l == r) {
if(v) sgt[o] = ptn[l];
else sgt[o] = 0;
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
if(x <= mid) modify(lch, l, mid, x, v);
else modify(rch, mid + 1, r, x, v);
sgt[o] = dep[sgt[lch]] < dep[sgt[rch]] ? sgt[lch] : sgt[rch];
}
inline int query(int o, int l, int r, int ll, int rr) {
if(l >= ll && r <= rr) {
return sgt[o];
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
register int resl = 0, resr = 0;
if(ll <= mid) resl = query(lch, l, mid, ll, rr);
if(rr > mid) resr = query(rch, mid + 1, r, ll, rr);
return dep[resl] < dep[resr] ? resl : resr;
}
inline int query(int u) {
int tu = top[u], ans = -1, res;
while(tu) {
res = query(1, 1, n, dfn[tu], dfn[u]);
if(res) ans = res;
u = fa[tu];
tu = top[u];
}
return ans;
}
inline void addedge(int u, int v) {
gra[++tot] = Edge {v, head[u]};
head[u] = tot;
}
int main() {
dep[0] = INF;
n = readint(); q = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint();
addedge(ut, vt);
addedge(vt, ut);
}
dfs1(1);
dfs2(1, 1);
while(q--) {
op = readint();
ut = readint();
if(op == 0) {
col[ut] ^= 1;
modify(1, 1, n, dfn[ut], col[ut]);
} else {
printf("%d\n", query(ut));
}
}
return 0;
}