[SPOJ-QTREE7]Query on a tree VII 题解
题目地址:洛谷:【SP16580】QTREE7 – Query on a tree VII – 洛谷、SPOJ:SPOJ.com – Problem QTREE7
题目描述
You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are numbered from 1 to n. Each node has a color, white or black, and a weight. We will ask you to perfrom some instructions of the following form:
- 0 u: ask for the maximum weight among the nodes which are connected to u, two nodes are connected if all the node on the path from u to v (inclusive u and v) have a same color.
- 1 u: toggle the color of u(that is, from black to white, or from white to black).
- 2 u w: change the weight of u to w.
给一个带点权的树,点有黑白两种颜色。操作:1.询问到u路径上颜色都一样的点中点权的最大值2.改变颜色3.改变点权
输入输出格式
输入格式:
The first line contains a number n denoted how many nodes in the tree(1 ≤ n ≤ 10^5). The next n-1 lines, each line has two numbers (u, v) describe a edge of the tree(1 ≤ u, v ≤ n). The next 2 lines, each line contains n number, the first line is the initial color of each node(0 or 1), and the second line is the initial weight, let’s say Wi, of each node(|Wi| ≤ 10^9). The next line contains a number m denoted how many operations we are going to process(1 ≤ m ≤ 105). The next m lines, each line describe a operation (t, u) as we mentioned above(0 ≤ t ≤ 2, 1 ≤ u ≤ n, |w| ≤ 10^9).
输出格式:
For each query operation, output the corresponding result.
输入输出样例
输入样例#1:
5 1 2 1 3 1 4 1 5 0 1 1 1 1 1 2 3 4 5 3 0 1 1 1 0 1
输出样例#1:
1 5
输入样例#2:
7 1 2 1 3 2 4 2 5 3 6 3 7 0 0 0 0 0 0 0 1 2 3 4 5 6 7 4 0 1 1 1 0 2 0 3
输出样例#2:
7 5 7
题解
参考资料:【Qtree】Query on a tree系列LCT解法 – CSDN博客
可以从QTREE6的代码改过来。QTREE6见:[SPOJ-QTREE6]Query on a tree VI 题解 | KSkun’s Blog
实际上和QTREE6的区别就在于要维护的值变成了若干最大值。那么我们考虑Splay子树直接算,轻边子树用一个set维护,这样方便在access的时候增删元素。
代码
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], ecnt, fa[MAXN], col[MAXN];
inline void addedge(int u, int v, int w) {
gra[ecnt] = Edge {v, w, head[u]}; head[u] = ecnt++;
}
struct LCT {
struct LCTNode {
int ch[2], fa, val, mx;
std::multiset<int> s;
bool rev;
} lct[MAXN];
inline bool isleft(int p) {
return lct[lct[p].fa].ch[0] == p;
}
inline bool isroot(int p) {
register int fa = lct[p].fa;
return lct[fa].ch[0] != p && lct[fa].ch[1] != p;
}
inline void update(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
lct[p].mx = lct[p].val;
if(!lct[p].s.empty()) lct[p].mx = std::max(lct[p].mx, *--lct[p].s.end());
if(ls) lct[p].mx = std::max(lct[p].mx, lct[ls].mx);
if(rs) lct[p].mx = std::max(lct[p].mx, lct[rs].mx);
}
inline void reverse(int p) {
std::swap(lct[p].ch[0], lct[p].ch[1]);
lct[p].rev ^= 1;
}
inline void pushdown(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
if(lct[p].rev) {
if(ls) reverse(ls);
if(rs) reverse(rs);
lct[p].rev ^= 1;
}
}
int sta[MAXN], stop;
inline void pushto(int p) {
stop = 0;
while(!isroot(p)) {
sta[stop++] = p;
p = lct[p].fa;
}
pushdown(p);
while(stop) {
pushdown(sta[--stop]);
}
}
inline void rotate(int p) {
register bool t = !isleft(p); register int fa = lct[p].fa, ffa = lct[fa].fa;
lct[p].fa = ffa; if(!isroot(fa)) lct[ffa].ch[!isleft(fa)] = p;
lct[fa].ch[t] = lct[p].ch[!t]; lct[lct[fa].ch[t]].fa = fa;
lct[p].ch[!t] = fa; lct[fa].fa = p;
update(fa);
}
inline void splay(int p) {
pushto(p);
for(register int fa = lct[p].fa; !isroot(p); rotate(p), fa = lct[p].fa) {
if(!isroot(fa)) rotate(isleft(fa) == isleft(p) ? fa : p);
}
update(p);
}
inline void access(int p) {
for(register int q = 0; p; q = p, p = lct[p].fa) {
splay(p);
if(lct[p].ch[1]) lct[p].s.insert(lct[lct[p].ch[1]].mx);
if(q) lct[p].s.erase(lct[p].s.find(lct[q].mx));
lct[p].ch[1] = q;
update(p);
}
}
inline void makert(int p) {
access(p);
splay(p);
reverse(p);
}
inline int findrt(int p) {
access(p);
splay(p);
while(lct[p].ch[0]) p = lct[p].ch[0];
return p;
}
inline void link(int u) {
access(fa[u]);
splay(fa[u]);
splay(u);
lct[fa[u]].ch[1] = u;
lct[u].fa = fa[u];
update(fa[u]);
}
inline void cut(int u) {
access(u);
splay(u);
lct[u].ch[0] = lct[lct[u].ch[0]].fa = 0;
update(u);
}
inline void modify(int u, int w) {
access(u);
splay(u);
lct[u].val = w;
update(u);
}
inline int query(int u) {
int c = col[u];
u = findrt(u);
splay(u);
return col[u] == c ? lct[u].mx : lct[lct[u].ch[1]].mx;
}
} L[2];
inline void dfs(int u, int f) {
for(int i = head[u]; ~i; i = gra[i].nxt) {
int v = gra[i].to;
if(v == f) continue;
fa[v] = L[col[v]].lct[v].fa = u;
dfs(v, u);
L[col[v]].lct[u].s.insert(L[col[v]].lct[v].mx);
}
L[0].update(u); L[1].update(u);
}
int n, q, ut, vt, op;
int main() {
memset(head, -1, sizeof(head));
n = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint();
addedge(ut, vt, 1);
addedge(vt, ut, 1);
}
for(int i = 1; i <= n; i++) {
col[i] = readint();
}
for(int i = 1; i <= n; i++) {
L[0].lct[i].val = L[1].lct[i].val = readint();
}
dfs(1, 0);
q = readint();
while(q--) {
op = readint(); ut = readint();
if(op == 0) {
printf("%d\n", L[col[ut]].query(ut));
} else if(op == 1) {
if(fa[ut]) {
L[col[ut]].cut(ut);
L[col[ut] ^ 1].link(ut);
}
col[ut] ^= 1;
} else {
vt = readint();
L[0].modify(ut, vt);
L[1].modify(ut, vt);
}
}
return 0;
}