[SPOJ-QTREE]Query on a tree 题解
题目地址:洛谷:【SP375】QTREE – Query on a tree – 洛谷、SPOJ:SPOJ.com – Problem QTREE
SPOJ QTREE系列:
- [SPOJ-QTREE]Query on a tree 题解(树链剖分)
- [SPOJ-QTREE2]Query on a tree II 题解(树链剖分)
- [SPOJ-PT07J]Query on a tree III 题解(主席树)
- [SPOJ-QTREE3]Query on a tree again! 题解(树链剖分)
- [SPOJ-QTREE4]Query on a tree IV 题解(点分治/边分治)
- [SPOJ-QTREE5]Query on a tree V 题解(边分治)
- [SPOJ-QTREE6]Query on a tree VI 题解(LCT)
- [SPOJ-QTREE7]Query on a tree VII 题解(LCT)
题目描述
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3…N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
- QUERY a b : ask for the maximum edge cost on the path from node a to node b
给一棵带边权的树,操作1.改边权2.求路径上最大边权。
输入输出格式
输入格式:
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions “CHANGE i ti” or “QUERY a b”,
- The end of each test case is signified by the string “DONE”.
There is one blank line between successive tests.
输出格式:
For each “QUERY” operation, write one integer representing its result.
输入输出样例
输入样例#1:
1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE
输出样例#1:
1 3
题解
考虑树链剖分,把每条边的权值记在较深的那个点上即可。剩下的就是板子。注意查询的时候LCA不能计算进去。
代码
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
inline int max(int a, int b) {
return a > b ? a : b;
}
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
inline bool isop(char c) {
return c == 'Q' || c == 'C' || c == 'D';
}
inline char readop() {
register char c;
while(!isop(c = fgc()));
return c;
}
const int MAXN = 10005;
struct Edge {
int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
int T, n, m, ut, vt, wt;
char op;
int w[MAXN], fa[MAXN], siz[MAXN], son[MAXN], dfn[MAXN], ptn[MAXN], top[MAXN], dep[MAXN], cnt;
inline void dfs1(int u) {
siz[u] = 1;
son[u] = 0;
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
w[v] = gra[i].w;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++cnt;
ptn[dfn[u]] = u;
if(son[u]) dfs2(son[u], tp);
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
int sgt[MAXN << 2];
inline void build(int o, int l, int r) {
if(l == r) {
sgt[o] = w[ptn[l]];
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
build(lch, l, mid);
build(rch, mid + 1, r);
sgt[o] = max(sgt[lch], sgt[rch]);
}
inline void modify(int o, int l, int r, int x, int v) {
if(l == r) {
sgt[o] = v;
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
if(x <= mid) modify(lch, l, mid, x, v);
else modify(rch, mid + 1, r, x, v);
sgt[o] = max(sgt[lch], sgt[rch]);
}
inline int query(int o, int l, int r, int ll, int rr) {
if(l >= ll && r <= rr) {
return sgt[o];
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1, res = 0;
if(ll <= mid) res = max(res, query(lch, l, mid, ll, rr));
if(rr > mid) res = max(res, query(rch, mid + 1, r, ll, rr));
return res;
}
inline int query(int u, int v) {
register int res = 0, tu = top[u], tv = top[v], t;
while(tu != tv) {
if(dep[tu] > dep[tv]) {
t = tu; tu = tv; tv = t;
t = u; u = v; v = t;
}
res = max(res, query(1, 1, n, dfn[tv], dfn[v]));
v = fa[tv];
tv = top[v];
}
if(dep[u] > dep[v]) { t = u; u = v; v = t; }
if(u != v) res = max(res, query(1, 1, n, dfn[u] + 1, dfn[v]));
return res;
}
struct Edge1 {
int u, v, w;
} edge[MAXN];
int main() {
T = readint();
while(T--) {
tot = cnt = 0;
memset(head, 0, sizeof(head));
n = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint(); wt = readint();
edge[i] = Edge1 {ut, vt, wt};
gra[++tot] = Edge {vt, wt, head[ut]};
head[ut] = tot;
gra[++tot] = Edge {ut, wt, head[vt]};
head[vt] = tot;
}
dfs1(1);
dfs2(1, 1);
build(1, 1, n);
for(;;) {
op = readop();
if(op == 'D') break;
ut = readint();
vt = readint();
if(op == 'Q') {
printf("%d\n", query(ut, vt));
} else {
register int u = dep[edge[ut].u] > dep[edge[ut].v] ? edge[ut].u : edge[ut].v;
modify(1, 1, n, dfn[u], vt);
}
}
}
return 0;
}