[SDOI2009]虔诚的墓主人 题解
题目地址:洛谷:【P2154】[SDOI2009]虔诚的墓主人 – 洛谷、BZOJ:Problem 1227. — [SDOI2009]虔诚的墓主人
题目描述
小W是一片新造公墓的管理人。公墓可以看成一块N×M的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。
当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。
一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k棵常青树。
小W希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少。
输入输出格式
输入格式:
输入文件religious.in的第一行包含两个用空格分隔的正整数N和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。
第二行包含一个正整数W,表示公墓中常青树的个数。
第三行起共W行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。
最后一行包含一个正整数k,意义如题目所示。
输出格式:
输出文件religious.out仅包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648取模。
输入输出样例
输入样例#1:
5 6 13 0 2 0 3 1 2 1 3 2 0 2 1 2 4 2 5 2 6 3 2 3 3 4 3 5 2 2
输出样例#1:
6
说明
图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。
对于30%的数据,满足1 ≤ N, M ≤ 1,000。
对于60%的数据,满足1 ≤ N, M ≤ 1,000,000。
对于100%的数据,满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000,1 ≤ k ≤ 10。
存在50%的数据,满足1 ≤ k ≤ 2。
存在25%的数据,满足1 ≤ W ≤ 10000。
题解
有一些分可以用[eq]O(n^2)[/eq]乱搞过。具体来说就是预处理每个格子上下左右的常青树数量扫一遍格子。N和M太大的时候可以离散化搞一下,容易发现我们的算法其实是[eq]O(w^2)[/eq]的复杂度。
想把[eq]O(n^2)[/eq]搞成[eq]O(n \log n)[/eq]的算法,需要用到数据结构的辅助。假设每个格子上面、下面、左边、右边的常青树数量分别是u、d、l、r,我们发现每个格子对答案的贡献实际上是\mathrm{C}_u^k \times \mathrm{C}_d^k \times \mathrm{C}_l^k \times \mathrm{C}_r^k。如果我们一个格子一个格子地计算,肯定是不行的,考虑用数据结构维护一个维度的信息,这里我们维护的是区间\mathrm{C}_u^k \times \mathrm{C}_d^k的和。可以先把常青树按照坐标双关键字排序。由于每棵常青树只会对它所在行下面的该列格子产生影响,我们可以边处理边更新这个常青树所在列的值。处理同行的每两棵常青树之间的墓区间的上述和,再乘以左右两边常青树的数量即可。这个求前缀和可以使用常数小的树状数组来做。
模数非常特殊,是[eq]2^{31}[/eq],我们可以用unsigned int自然溢出。
代码
// Code by KSkun, 2018/4
#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF
: *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
register char c = fgc();
while(!isdigit(c)) {
if(c == '-') neg = -1;
c = fgc();
}
while(isdigit(c)) {
res = (res << 1) + (res << 3) + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 200005;
int n, m, w, k;
unsigned int C[MAXN][15];
inline void calc(int x) {
C[0][0] = 1;
for(int i = 1; i <= x; i++) {
for(int j = 0; j <= std::min(i, k); j++) {
C[i][j] += C[i - 1][j];
if(j > 0) C[i][j] += C[i - 1][j - 1];
}
}
}
unsigned int tree[MAXN];
inline int lowbit(int x) {
return x & -x;
}
inline void add(int x, int v) {
for(int i = x; i <= w; i += lowbit(i)) {
tree[i] += v;
}
}
inline unsigned int query(int x) {
unsigned int res = 0;
for(int i = x; i; i -= lowbit(i)) {
res += tree[i];
}
return res;
}
struct Tree {
int x, y;
} trees[MAXN];
inline bool cmp(Tree a, Tree b) {
return a.x != b.x ? a.x < b.x : a.y < b.y;
}
std::vector<int> tmpx, tmpy;
int rcnt[MAXN], ccnt[MAXN], nrcnt, nccnt[MAXN];
int main() {
n = readint(); m = readint(); w = readint();
for(int i = 1; i <= w; i++) {
trees[i].x = readint(); trees[i].y = readint();
tmpx.push_back(trees[i].x); tmpy.push_back(trees[i].y);
}
k = readint();
calc(w);
tmpx.push_back(-1); tmpy.push_back(-1);
// 离散化
std::sort(tmpx.begin(), tmpx.end());
tmpx.erase(std::unique(tmpx.begin(), tmpx.end()), tmpx.end());
std::sort(tmpy.begin(), tmpy.end());
tmpy.erase(std::unique(tmpy.begin(), tmpy.end()), tmpy.end());
for(int i = 1; i <= w; i++) {
trees[i].x = std::lower_bound(tmpx.begin(), tmpx.end(), trees[i].x) - tmpx.begin();
trees[i].y = std::lower_bound(tmpy.begin(), tmpy.end(), trees[i].y) - tmpy.begin();
rcnt[trees[i].x]++; ccnt[trees[i].y]++;
}
std::sort(trees + 1, trees + w + 1, cmp);
unsigned int ans = 0;
for(int i = 1; i < w; i++) {
if(trees[i].x != trees[i - 1].x) nrcnt = 0;
nccnt[trees[i].y]++; nrcnt++;
// 更新所在列的值
unsigned int up = nccnt[trees[i].y], down = ccnt[trees[i].y] - nccnt[trees[i].y],
now = C[up][k] * C[down][k], old = query(trees[i].y) - query(trees[i].y - 1);
if(now != old) add(trees[i].y, now - old);
unsigned int left = nrcnt, right = rcnt[trees[i].x] - nrcnt;
if(trees[i].x != trees[i + 1].x || trees[i + 1].y - trees[i].y <= 1
|| left < k || right < k) continue;
// 计算两棵常青树之间区间对答案的贡献
ans += C[left][k] * C[right][k] * (query(trees[i + 1].y - 1) - query(trees[i].y));
}
printf("%u", ans % 2147483648u); // 自然溢出是对2^32取模,这里再取一次模
return 0;
}