[POI2005]SAM-Toy Cars 题解

[POI2005]SAM-Toy Cars 题解

题目地址:洛谷:【P3419】[POI2005]SAM-Toy Cars – 洛谷、BZOJ:Problem 1528. — [POI2005]sam-Toy Cars

题目描述

Jasio 是一个三岁的小男孩,他最喜欢玩玩具了,他有n 个不同的玩具,它们都被放在了很高的架子上所以Jasio 拿不到它们. 为了让他的房间有足够的空间,在任何时刻地板上都不会有超过k 个玩具. Jasio 在地板上玩玩具. Jasio’的妈妈则在房间里陪他的儿子. 当Jasio 想玩地板上的其他玩具时,他会自己去拿,如果他想玩的玩具在架子上,他的妈妈则会帮他去拿,当她拿玩具的时候,顺便也会将一个地板上的玩具放上架子使得地板上有足够的空间. 他的妈妈很清楚自己的孩子所以他能够预料到Jasio 想玩些什么玩具. 所以她想尽量的使自己去架子上拿玩具的次数尽量的少,应该怎么安排放玩具的顺序呢?

题意简述

Jasio有n个不同的玩具,有一段时间p内,每一单位时间他都想玩一个玩具,而地上只能放最多k个玩具。如果玩具不在地上,则他妈妈要帮他从架子上拿,如果此时地板上的玩具已经达到了k个,则还要拿一个玩具放回架子。求一种安排方式使得妈妈从架子上拿玩具的次数最少。

输入输出格式

输入格式:
第一行三个整数: n, k, p (1 <= k <= n <= 100.000, 1 <= p <= 500.000), 分别表示玩具的总数,地板上玩具的最多个数以及Jasio 他想玩玩具的序列的个数,接下来p行每行描述一个玩具编号表示Jasio 想玩的玩具.

输出格式:
一个数表示Jasio 的妈妈最少要拿多少次玩具.

输入输出样例

输入样例#1:

3 2 7
1
2
3
1
3
1
2

输出样例#1:

4

题解

贪心的结论是,放回去的一定是此时地上的“下一次使用的时间最晚的”玩具,这个信息可以在读入的时候用链表处理出来。因为当一个玩具还在地上的时候,从此时到下次使用它都不会再满足条件,反而还会占用一个位置,显然把这个位置让给现在用的玩具是最优的。
我们可以维护一个大根堆,按照每个玩具下一次被使用的时间来排序。但是注意,当一个玩具已经在地板上的时候,我们是无法更新这个玩具在堆中的下一次使用时间的信息的,因此我们得往堆中插入新的信息。此时可以用一个很取巧的办法,即对k加1,因为旧信息在以后永远都不会被移除,我们又无法改变堆的size值来修正有效信息的个数,就可以扩大k的值了。
复杂度O(n \log n)

代码

// Code by KSkun, 2018/6
#include <cstdio>
#include <cctype>

#include <algorithm>
#include <queue>
#include <vector>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) 
        ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    register char c = fgc();
    while(!isdigit(c)) {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(isdigit(c)) {
        res = (res << 1) + (res << 3) + c - '0';
        c = fgc();
    }
    return res * neg;
}

const int MAXN = 500005;

bool inque[MAXN];

int n, k, p, a[MAXN], nxt[MAXN], head[MAXN];

struct cmp {
    inline bool operator()(const int &a, const int &b) {
        return nxt[a] < nxt[b];
    }
};

std::priority_queue<int, std::vector<int>, cmp> pq;

int main() {
    n = readint(); k = readint(); p = readint();
    for(int i = 1; i <= p; i++) {
        a[i] = readint();
        nxt[head[a[i]]] = i; head[a[i]] = i;
    }
    for(int i = 1; i <= n; i++) {
        nxt[head[i]] = 1e9;
    }
    int ans = 0;
    for(int i = 1; i <= p; i++) {
        if(!inque[a[i]]) {
            if(pq.size() == k) {
                inque[a[pq.top()]] = false; pq.pop();
            }
            inque[a[i]] = true; ans++;
        } else {
            k++;
        }
        pq.push(i);
    }
    printf("%d", ans);
    return 0;
}


发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据