[POI2005]SAM-Toy Cars 题解
题目地址:洛谷:【P3419】[POI2005]SAM-Toy Cars – 洛谷、BZOJ:Problem 1528. — [POI2005]sam-Toy Cars
题目描述
Jasio 是一个三岁的小男孩,他最喜欢玩玩具了,他有n 个不同的玩具,它们都被放在了很高的架子上所以Jasio 拿不到它们. 为了让他的房间有足够的空间,在任何时刻地板上都不会有超过k 个玩具. Jasio 在地板上玩玩具. Jasio’的妈妈则在房间里陪他的儿子. 当Jasio 想玩地板上的其他玩具时,他会自己去拿,如果他想玩的玩具在架子上,他的妈妈则会帮他去拿,当她拿玩具的时候,顺便也会将一个地板上的玩具放上架子使得地板上有足够的空间. 他的妈妈很清楚自己的孩子所以他能够预料到Jasio 想玩些什么玩具. 所以她想尽量的使自己去架子上拿玩具的次数尽量的少,应该怎么安排放玩具的顺序呢?
题意简述
Jasio有n个不同的玩具,有一段时间p内,每一单位时间他都想玩一个玩具,而地上只能放最多k个玩具。如果玩具不在地上,则他妈妈要帮他从架子上拿,如果此时地板上的玩具已经达到了k个,则还要拿一个玩具放回架子。求一种安排方式使得妈妈从架子上拿玩具的次数最少。
输入输出格式
输入格式:
第一行三个整数: n, k, p (1 <= k <= n <= 100.000, 1 <= p <= 500.000), 分别表示玩具的总数,地板上玩具的最多个数以及Jasio 他想玩玩具的序列的个数,接下来p行每行描述一个玩具编号表示Jasio 想玩的玩具.
输出格式:
一个数表示Jasio 的妈妈最少要拿多少次玩具.
输入输出样例
输入样例#1:
3 2 7 1 2 3 1 3 1 2
输出样例#1:
4
题解
贪心的结论是,放回去的一定是此时地上的“下一次使用的时间最晚的”玩具,这个信息可以在读入的时候用链表处理出来。因为当一个玩具还在地上的时候,从此时到下次使用它都不会再满足条件,反而还会占用一个位置,显然把这个位置让给现在用的玩具是最优的。
我们可以维护一个大根堆,按照每个玩具下一次被使用的时间来排序。但是注意,当一个玩具已经在地板上的时候,我们是无法更新这个玩具在堆中的下一次使用时间的信息的,因此我们得往堆中插入新的信息。此时可以用一个很取巧的办法,即对k加1,因为旧信息在以后永远都不会被移除,我们又无法改变堆的size值来修正有效信息的个数,就可以扩大k的值了。
复杂度O(n \log n)。
代码
// Code by KSkun, 2018/6
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <queue>
#include <vector>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2)
? EOF : *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
register char c = fgc();
while(!isdigit(c)) {
if(c == '-') neg = -1;
c = fgc();
}
while(isdigit(c)) {
res = (res << 1) + (res << 3) + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 500005;
bool inque[MAXN];
int n, k, p, a[MAXN], nxt[MAXN], head[MAXN];
struct cmp {
inline bool operator()(const int &a, const int &b) {
return nxt[a] < nxt[b];
}
};
std::priority_queue<int, std::vector<int>, cmp> pq;
int main() {
n = readint(); k = readint(); p = readint();
for(int i = 1; i <= p; i++) {
a[i] = readint();
nxt[head[a[i]]] = i; head[a[i]] = i;
}
for(int i = 1; i <= n; i++) {
nxt[head[i]] = 1e9;
}
int ans = 0;
for(int i = 1; i <= p; i++) {
if(!inque[a[i]]) {
if(pq.size() == k) {
inque[a[pq.top()]] = false; pq.pop();
}
inque[a[i]] = true; ans++;
} else {
k++;
}
pq.push(i);
}
printf("%d", ans);
return 0;
}