标签: 数据结构

[SCOI2014]方伯伯的OJ 题解

[SCOI2014]方伯伯的OJ 题解

题目地址:洛谷:【P3285】[SCOI2014]方伯伯的OJ – 洛谷、BZ 

[ZJOI2007]报表统计 题解

[ZJOI2007]报表统计 题解

题目地址:洛谷:【P1110】[ZJOI2007]报表统计 – 洛谷、BZOJ 

[ZJOI2006]书架 题解

[ZJOI2006]书架 题解

题目地址:洛谷:【P2596】[ZJOI2006]书架 – 洛谷、BZOJ:Problem 1861. — [Zjoi2006]Book 书架

题目描述

小T有一个很大的书柜。这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列。她用1到n的正整数给每本书都编了号。
小T在看书的时候,每次取出一本书,看完后放回书柜然后再拿下一本。由于这些书太有吸引力了,所以她看完后常常会忘记原来是放在书柜的什么位置。不过小T的记忆力是非常好的,所以每次放书的时候至少能够将那本书放在拿出来时的位置附近,比如说她拿的时候这本书上面有X本书,那么放回去时这本书上面就只可能有X-1、X或X+1本书。
当然也有特殊情况,比如在看书的时候突然电话响了或者有朋友来访。这时候粗心的小T会随手把书放在书柜里所有书的最上面或者最下面,然后转身离开。
久而久之,小T的书柜里的书的顺序就会越来越乱,找到特定的编号的书就变得越来越困难。于是她想请你帮她编写一个图书管理程序,处理她看书时的一些操作,以及回答她的两个提问:(1)编号为X的书在书柜的什么位置;(2)从上到下第i本书的编号是多少。

输入输出格式

输入格式:
第一行有两个数n,m,分别表示书的个数以及命令的条数;第二行为n个正整数:第i个数表示初始时从上至下第i个位置放置的书的编号;第三行到m+2行,每行一条命令。命令有5种形式:
1. Top S——表示把编号为S的书放在最上面。
2. Bottom S——表示把编号为S的书放在最下面。
3. Insert S T——T∈{-1,0,1},若编号为S的书上面有X本书,则这条命令表示把这本书放回去后它的上面有X+T本书;
4. Ask S——询问编号为S的书的上面目前有多少本书。
5. Query S——询问从上面数起的第S本书的编号。

输出格式:
对于每一条Ask或Query语句你应该输出一行,一个数,代表询问的答案。

输入输出样例

输入样例#1:

10 10
1 3 2 7 5 8 10 4 9 6
Query 3
Top 5
Ask 6
Bottom 3
Ask 3
Top 6
Insert 4 -1
Query 5
Query 2
Ask 2

输出样例#1:

2
9
9
7
5
3

说明

100%的数据,n,m <= 80000

题解

考虑使用Splay来维护这个序列。对于放在最上面的情况,我们考虑把S splay到根,此时只需要找到S的后继,也splay上来,并且把S的左子树接到后继节点的左子树位置上,就完成了。放在最下面类似操作。Insert操作可以考虑直接调换节点信息。Ask即询问左子树大小。Query就是一个排名询问。

代码

// Code by KSkun, 2018/4
#include <cstdio>
#include <cstring>

#include <algorithm>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF 
        : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    char c = fgc();
    while(c < '0' || c > '9') {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = fgc();
    }
    return res * neg;
}

inline bool isop(char c) {
    return c == 'T' || c == 'B' || c == 'I' || c == 'A' || c == 'Q';
}

inline char readop() {
    char c;
    while(!isop(c = fgc()));
    return c;
}

const int MAXN = 80005, INF = 1e9;

struct Node {
    int fa, ch[2], val, siz;
} tr[MAXN];
int rt, spn[MAXN], tot;

inline void update(int p) {
    tr[p].siz = tr[tr[p].ch[0]].siz + tr[tr[p].ch[1]].siz + 1;
}

inline bool isleft(int p) {
    return tr[tr[p].fa].ch[0] == p;
}

inline void rotate(int p) {
    bool t = !isleft(p); int fa = tr[p].fa, ffa = tr[fa].fa;
    tr[p].fa = ffa; if(ffa) tr[ffa].ch[!isleft(fa)] = p;
    tr[fa].ch[t] = tr[p].ch[!t]; tr[tr[fa].ch[t]].fa = fa;
    tr[fa].fa = p; tr[p].ch[!t] = fa;
    update(fa);
    if(!tr[p].fa) rt = p;
}

inline void splay(int p, int tar) {
    for(int fa = tr[p].fa; fa != tar; rotate(p), fa = tr[p].fa) {
        if(tr[fa].fa != tar) rotate(isleft(p) == isleft(fa) ? fa : p);
    }
    update(p);
}

inline int queryn(int p, int rk) {
    if(rk <= tr[tr[p].ch[0]].siz) {
        return queryn(tr[p].ch[0], rk);
    }
    rk -= tr[tr[p].ch[0]].siz;
    if(rk == 1) {
        splay(p, 0);
        return p;
    }
    rk--;
    return queryn(tr[p].ch[1], rk);
}

inline int querypre() {
    int p = tr[rt].ch[0];
    while(tr[p].ch[1]) p = tr[p].ch[1];
    return p;
}

inline int querynxt() {
    int p = tr[rt].ch[1];
    while(tr[p].ch[0]) p = tr[p].ch[0];
    return p;
}

inline void nodeswap(int p, int q) {
    std::swap(tr[p].val, tr[q].val);
    std::swap(spn[tr[p].val], spn[tr[q].val]);
}

inline void top(int p) {
    splay(p, 0);
    if(!tr[p].ch[0]) return;
    if(!tr[p].ch[1]) {
        std::swap(tr[p].ch[0], tr[p].ch[1]);
    }
    int q = querynxt();
    splay(q, p);
    tr[q].ch[0] = tr[p].ch[0];
    tr[tr[q].ch[0]].fa = q; 
    tr[p].ch[0] = 0;
    update(p); update(q);
}

inline void bottom(int p) {
    splay(p, 0);
    if(!tr[p].ch[1]) return;
    if(!tr[p].ch[0]) {
        std::swap(tr[p].ch[0], tr[p].ch[1]);
    }
    int q = querypre();
    splay(q, p);
    tr[q].ch[1] = tr[p].ch[1];
    tr[tr[q].ch[1]].fa = q;
    tr[p].ch[1] = 0;
    update(p); update(q);
}

int w[MAXN];

inline int build(int fa, int l, int r) {
    if(l > r) return 0;
    int p = ++tot, mid = (l + r) >> 1;
    tr[p].val = w[mid];
    spn[w[mid]] = p;
    tr[p].fa = fa;
    tr[p].ch[0] = build(p, l, mid - 1);
    tr[p].ch[1] = build(p, mid + 1, r);
    update(p);
    return p;
}

int n, m, s, t;
char op;

int main() {
    n = readint(); m = readint();
    for(int i = 1; i <= n; i++) w[i] = readint();
    rt = build(0, 1, n);
    while(m--) {
        op = readop(); s = readint();
        if(op == 'T') {
            s = spn[s];
            top(s);
        } else if(op == 'B') {
            s = spn[s];
            bottom(s);
        } else if(op == 'I') {
            s = spn[s];
            t = readint();
            splay(s, 0);
            if(t == -1) {
                int q = querypre();
                nodeswap(s, q);
            } else if(t == 1) {
                int q = querynxt();
                nodeswap(s, q);
            }
        } else if(op == 'A') {
            s = spn[s];
            splay(s, 0);
            printf("%d\n", tr[tr[s].ch[0]].siz);
        } else {
            int q = queryn(rt, s);
            printf("%d\n", tr[q].val);
        }
    }
    return 0;
}
[NOI2014]魔法森林 题解

[NOI2014]魔法森林 题解

题目地址:洛谷:【P2387】[NOI2014]魔法森林 – 洛谷、BZOJ: 

[NOI2015]软件包管理器 题解

[NOI2015]软件包管理器 题解

题目地址:洛谷:【P2146】[NOI2015]软件包管理器 – 洛谷、BZO 

[ZJOI2008]树的统计 题解

[ZJOI2008]树的统计 题解

题目地址:洛谷:【P2590】[ZJOI2008]树的统计 – 洛谷、BZOJ:Problem 1036. — [ZJOI2008]树的统计Count

题目描述

一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。
我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v: 询问从点u到点v的路径上的节点的权值和
注意:从点u到点v的路径上的节点包括u和v本身

输入输出格式

输入格式:
输入文件的第一行为一个整数n,表示节点的个数。
接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。
接下来一行n个整数,第i个整数wi表示节点i的权值。
接下来1行,为一个整数q,表示操作的总数。
接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。

输出格式:
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

输入输出样例

输入样例#1:

4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

输出样例#1:

4
1
2
2
10
6
5
6
5
16

说明

对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

题解

比洛谷树剖模板还简单。就是个裸树剖。

代码

// Code by KSkun, 2018/4
#include <cstdio>

#include <algorithm>
#include <vector>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF 
        : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    char c = fgc();
    while(c < '0' || c > '9') {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = fgc();
    }
    return res * neg;
}

inline bool isop(char c) {
    return c == 'X' || c == 'S' || c == 'C';
}

inline char readop() {
    char c;
    while(!isop(c = fgc()));
    return c;
}

const int MAXN = 30005, INF = 1e9;

int n, q, dfn[MAXN], ptn[MAXN], w[MAXN];
std::vector<int> gra[MAXN];

#define lch o << 1
#define rch (o << 1) | 1
#define mid ((l + r) >> 1)

LL val[MAXN << 2], mx[MAXN << 2];

inline void merge(int o) {
    val[o] = val[lch] + val[rch];
    mx[o] = std::max(mx[lch], mx[rch]);
}

inline void build(int o, int l, int r) {
    if(l == r) {
        val[o] = mx[o] = w[ptn[l]];
        return;
    }
    build(lch, l, mid);
    build(rch, mid + 1, r);
    merge(o);
}

inline void modify(int o, int l, int r, int x, LL v) {
    if(l == r) {
        val[o] = mx[o] = v;
        return;
    }
    if(x <= mid) modify(lch, l, mid, x, v);
    else modify(rch, mid + 1, r, x, v);
    merge(o);
}

inline LL querys(int o, int l, int r, int ll, int rr) {
    if(l >= ll && r <= rr) {
        return val[o];
    }
    LL res = 0;
    if(ll <= mid) res += querys(lch, l, mid, ll, rr);
    if(rr > mid) res += querys(rch, mid + 1, r, ll, rr);
    return res;
}
inline LL querym(int o, int l, int r, int ll, int rr) {
    if(l >= ll && r <= rr) {
        return mx[o];
    }
    LL res = -INF;
    if(ll <= mid) res = std::max(res, querym(lch, l, mid, ll, rr));
    if(rr > mid) res = std::max(res, querym(rch, mid + 1, r, ll, rr));
    return res;
}

int fa[MAXN], siz[MAXN], dep[MAXN], top[MAXN], son[MAXN], clk;

inline void dfs1(int u) {
    siz[u] = 1;
    for(int i = 0; i < gra[u].size(); i++) {
        int v = gra[u][i];
        if(v == fa[u]) continue;
        fa[v] = u;
        dep[v] = dep[u] + 1;
        dfs1(v);
        siz[u] += siz[v];
        if(siz[v] > siz[son[u]]) son[u] = v;
    }
}

inline void dfs2(int u, int tp) {
    dfn[u] = ++clk;
    ptn[dfn[u]] = u;
    top[u] = tp;
    if(son[u]) {
        dfs2(son[u], tp);
    }
    for(int i = 0; i < gra[u].size(); i++) {
        int v = gra[u][i];
        if(v == fa[u] || v == son[u]) continue;
        dfs2(v, v);
    }
}

inline LL querys(int x, int y) {
    int tx = top[x], ty = top[y];
    LL res = 0;
    while(tx != ty) {
        if(dep[tx] > dep[ty]) {
            std::swap(x, y);
            std::swap(tx, ty);
        }
        res += querys(1, 1, n, dfn[ty], dfn[y]);
        y = fa[ty];
        ty = top[y];
    }
    if(dep[x] > dep[y]) {
        std::swap(x, y);
    }
    res += querys(1, 1, n, dfn[x], dfn[y]);
    return res;
}

inline LL querym(int x, int y) {
    int tx = top[x], ty = top[y];
    LL res = -INF;
    while(tx != ty) {
        if(dep[tx] > dep[ty]) {
            std::swap(x, y);
            std::swap(tx, ty);
        }
        res = std::max(res, querym(1, 1, n, dfn[ty], dfn[y]));
        y = fa[ty];
        ty = top[y];
    }
    if(dep[x] > dep[y]) {
        std::swap(x, y);
    }
    res = std::max(res, querym(1, 1, n, dfn[x], dfn[y]));
    return res;
}

inline void modify(int x, LL z) {
    modify(1, 1, n, dfn[x], z);
}

int x, y;
char op;

int main() {
    n = readint();
    for(int i = 1; i < n; i++) {
        x = readint(); y = readint();
        gra[x].push_back(y);
        gra[y].push_back(x);
    }
    for(int i = 1; i <= n; i++) w[i] = readint();
    dfs1(1);
    dfs2(1, 1);
    build(1, 1, n);
    q = readint();
    while(q--) {
        op = readop(); x = readint(); y = readint();
        if(op == 'X') {
            printf("%lld\n", querym(x, y));
        } else if(op == 'S') {
            printf("%lld\n", querys(x, y));
        } else {
            modify(x, y);
        }
    }
    return 0;
}
[HAOI2012]高速公路 题解

[HAOI2012]高速公路 题解

题目地址:洛谷:【P2221】[HAOI2012]高速公路 – 洛谷、BZOJ 

[SCOI2012]喵星球上的点名 题解

[SCOI2012]喵星球上的点名 题解

题目地址:洛谷:【P2336】[SCOI2012]喵星球上的点名 – 洛谷、B 

[SPOJ-QTREE7]Query on a tree VII 题解

[SPOJ-QTREE7]Query on a tree VII 题解

题目地址:洛谷:【SP16580】QTREE7 – Query on a tree VII – 洛谷、SPOJ:SPOJ.com – Problem QTREE7

题目描述

You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are numbered from 1 to n. Each node has a color, white or black, and a weight. We will ask you to perfrom some instructions of the following form:

  • 0 u: ask for the maximum weight among the nodes which are connected to u, two nodes are connected if all the node on the path from u to v (inclusive u and v) have a same color.
  • 1 u: toggle the color of u(that is, from black to white, or from white to black).
  • 2 u w: change the weight of u to w.

给一个带点权的树,点有黑白两种颜色。操作:1.询问到u路径上颜色都一样的点中点权的最大值2.改变颜色3.改变点权

输入输出格式

输入格式:
The first line contains a number n denoted how many nodes in the tree(1 ≤ n ≤ 10^5). The next n-1 lines, each line has two numbers (u, v) describe a edge of the tree(1 ≤ u, v ≤ n). The next 2 lines, each line contains n number, the first line is the initial color of each node(0 or 1), and the second line is the initial weight, let’s say Wi, of each node(|Wi| ≤ 10^9). The next line contains a number m denoted how many operations we are going to process(1 ≤ m ≤ 105). The next m lines, each line describe a operation (t, u) as we mentioned above(0 ≤ t ≤ 2, 1 ≤ u ≤ n, |w| ≤ 10^9).

输出格式:
For each query operation, output the corresponding result.

输入输出样例

输入样例#1:

5
1 2
1 3
1 4
1 5
0 1 1 1 1
1 2 3 4 5
3
0 1
1 1
0 1

输出样例#1:

1
5

输入样例#2:

7
1 2
1 3
2 4
2 5
3 6
3 7
0 0 0 0 0 0 0
1 2 3 4 5 6 7
4
0 1
1 1
0 2
0 3

输出样例#2:

7
5
7

题解

参考资料:【Qtree】Query on a tree系列LCT解法 – CSDN博客
可以从QTREE6的代码改过来。QTREE6见:[SPOJ-QTREE6]Query on a tree VI 题解 | KSkun’s Blog
实际上和QTREE6的区别就在于要维护的值变成了若干最大值。那么我们考虑Splay子树直接算,轻边子树用一个set维护,这样方便在access的时候增删元素。

代码

// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>

#include <algorithm>
#include <set>

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline int readint() {
    register int res = 0, neg = 1;
    char c = fgc();
    while(c < '0' || c > '9') {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = fgc();
    }
    return res * neg;
}

const int MAXN = 100005, INF = 1e9;

struct Edge {
    int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], ecnt, fa[MAXN], col[MAXN];

inline void addedge(int u, int v, int w) {
    gra[ecnt] = Edge {v, w, head[u]}; head[u] = ecnt++;
}

struct LCT {
    struct LCTNode {
        int ch[2], fa, val, mx;
        std::multiset<int> s;
        bool rev;
    } lct[MAXN];

    inline bool isleft(int p) {
        return lct[lct[p].fa].ch[0] == p;
    }

    inline bool isroot(int p) {
        register int fa = lct[p].fa;
        return lct[fa].ch[0] != p && lct[fa].ch[1] != p;
    }

    inline void update(int p) {
        register int ls = lct[p].ch[0], rs = lct[p].ch[1];
        lct[p].mx = lct[p].val;
        if(!lct[p].s.empty()) lct[p].mx = std::max(lct[p].mx, *--lct[p].s.end());
        if(ls) lct[p].mx = std::max(lct[p].mx, lct[ls].mx);
        if(rs) lct[p].mx = std::max(lct[p].mx, lct[rs].mx);
    }

    inline void reverse(int p) {
        std::swap(lct[p].ch[0], lct[p].ch[1]);
        lct[p].rev ^= 1;
    }

    inline void pushdown(int p) {
        register int ls = lct[p].ch[0], rs = lct[p].ch[1];
        if(lct[p].rev) {
            if(ls) reverse(ls);
            if(rs) reverse(rs);
            lct[p].rev ^= 1;
        }
    }

    int sta[MAXN], stop;

    inline void pushto(int p) {
        stop = 0;
        while(!isroot(p)) {
            sta[stop++] = p;
            p = lct[p].fa;
        }
        pushdown(p);
        while(stop) {
            pushdown(sta[--stop]);
        }
    }

    inline void rotate(int p) {
        register bool t = !isleft(p); register int fa = lct[p].fa, ffa = lct[fa].fa;
        lct[p].fa = ffa; if(!isroot(fa)) lct[ffa].ch[!isleft(fa)] = p;
        lct[fa].ch[t] = lct[p].ch[!t]; lct[lct[fa].ch[t]].fa = fa;
        lct[p].ch[!t] = fa; lct[fa].fa = p;
        update(fa);
    }

    inline void splay(int p) {
        pushto(p);
        for(register int fa = lct[p].fa; !isroot(p); rotate(p), fa = lct[p].fa) {
            if(!isroot(fa)) rotate(isleft(fa) == isleft(p) ? fa : p);
        }
        update(p);
    }

    inline void access(int p) {
        for(register int q = 0; p; q = p, p = lct[p].fa) {
            splay(p);
            if(lct[p].ch[1]) lct[p].s.insert(lct[lct[p].ch[1]].mx);
            if(q) lct[p].s.erase(lct[p].s.find(lct[q].mx));
            lct[p].ch[1] = q;
            update(p);
        }
    }

    inline void makert(int p) {
        access(p);
        splay(p);
        reverse(p);
    }

    inline int findrt(int p) {
        access(p);
        splay(p);
        while(lct[p].ch[0]) p = lct[p].ch[0];
        return p;
    }

    inline void link(int u) {
        access(fa[u]);
        splay(fa[u]);
        splay(u);
        lct[fa[u]].ch[1] = u;
        lct[u].fa = fa[u];
        update(fa[u]);
    }

    inline void cut(int u) {
        access(u);
        splay(u);
        lct[u].ch[0] = lct[lct[u].ch[0]].fa = 0;
        update(u);
    }

    inline void modify(int u, int w) {
        access(u);
        splay(u);
        lct[u].val = w;
        update(u);
    }

    inline int query(int u) {
        int c = col[u];
        u = findrt(u);
        splay(u);
        return col[u] == c ? lct[u].mx : lct[lct[u].ch[1]].mx;
    }
} L[2];

inline void dfs(int u, int f) {
    for(int i = head[u]; ~i; i = gra[i].nxt) {
        int v = gra[i].to;
        if(v == f) continue;
        fa[v] = L[col[v]].lct[v].fa = u;
        dfs(v, u);
        L[col[v]].lct[u].s.insert(L[col[v]].lct[v].mx);
    }
    L[0].update(u); L[1].update(u);
}

int n, q, ut, vt, op;

int main() {
    memset(head, -1, sizeof(head));
    n = readint();
    for(int i = 1; i < n; i++) {
        ut = readint(); vt = readint();
        addedge(ut, vt, 1);
        addedge(vt, ut, 1);
    }
    for(int i = 1; i <= n; i++) {
        col[i] = readint();
    }
    for(int i = 1; i <= n; i++) {
        L[0].lct[i].val = L[1].lct[i].val = readint();
    }
    dfs(1, 0);
    q = readint();
    while(q--) {
        op = readint(); ut = readint();
        if(op == 0) {
            printf("%d\n", L[col[ut]].query(ut));
        } else if(op == 1) {
            if(fa[ut]) {
                L[col[ut]].cut(ut);
                L[col[ut] ^ 1].link(ut);
            }
            col[ut] ^= 1;
        } else {
            vt = readint();
            L[0].modify(ut, vt);
            L[1].modify(ut, vt);
        }
    }
    return 0;
}
[SPOJ-QTREE6]Query on a tree VI 题解

[SPOJ-QTREE6]Query on a tree VI 题解

题目地址:洛谷:【SP16549】QTREE6 – Query on a tr