[NOI2008]志愿者招募 题解
题目地址:ė …
May all the beauty be blessed.
题目地址:洛谷:【P3159】[CQOI2012]交换棋子 – 洛谷、BZOJ:Problem 2668. — [cqoi2012]交换棋子
有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态。要求第i行第j列的格子只能参与mi,j次交换。
输入格式:
第一行包含两个整数n,m(1<=n, m<=20)。以下n行为初始状态,每行为一个包含m个字符的01串,其中0表示黑色棋子,1表示白色棋子。以下n行为目标状态,格式同初始状态。以下n行每行为一个包含m个0~9数字的字符串,表示每个格子参与交换的次数上限。
输出格式:
输出仅一行,为最小交换总次数。如果无解,输出-1。
输入样例#1:
3 3 110 000 001 000 110 100 222 222 222
输出样例#1:
4
如果我们把棋盘上看做只有黑色棋子,那么可以把交换达到目标状态看做把每个黑色棋子移动到目标位置上去。在移动的过程中,起终点格子各参与一次交换,路径上的其他格子各参与两次交换。既然如此,我们可以把次数上限平分成向上一步交换和向下一步交换两部分。
建图的时候,把每个格子拆成三个点,入点、原点、出点,流的方向应该是入点→原点→出点,这三个点之间的边,容量均为次数上限的一半,不妨把交换次数(费用)放在入点→原点的边上,可以避免算多交换次数。
对于初始状态的黑点格子,从源向该格子的原点连容量1费用0的边,对于目标状态的黑点格子,从该格子的原点向汇连容量1费用0的边,对于有公共点/边的格子,从出点向入点连容量无限费用0的边。至此网络就建立完成了,只需要跑最小费用最大流,若满流则答案为费用,否则无解。
// Code by KSkun, 2018/6
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#include <queue>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2)
? EOF : *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1; register char c = fgc();
for(; !isdigit(c); c = fgc()) if(c == '-') neg = -1;
for(; isdigit(c); c = fgc()) res = (res << 1) + (res << 3) + c - '0';
return res * neg;
}
inline int readdigit() {
char c;
while(!isdigit(c = fgc())) {}
return c - '0';
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, cap, cost, nxt;
} gra[MAXN << 4];
int head[MAXN], tot;
inline void addedge(int u, int v, int cap, int cost) {
gra[tot] = Edge {v, cap, cost, head[u]}; head[u] = tot++;
gra[tot] = Edge {u, 0, -cost, head[v]}; head[v] = tot++;
}
int dis[MAXN], f[MAXN], pre[MAXN], pree[MAXN];
std::queue<int> que;
bool inque[MAXN];
inline bool spfa(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memset(f, 0, sizeof(f));
dis[s] = 0; f[s] = INF; inque[s] = true; que.push(s);
while(!que.empty()) {
int u = que.front(); que.pop(); inque[u] = false;
for(int i = head[u]; ~i; i = gra[i].nxt) {
int v = gra[i].to;
if(gra[i].cap && dis[v] > dis[u] + gra[i].cost) {
dis[v] = dis[u] + gra[i].cost;
f[v] = std::min(f[u], gra[i].cap);
pre[v] = u; pree[v] = i;
if(!inque[v]) {
que.push(v); inque[v] = true;
}
}
}
}
return f[t];
}
int flow, cost;
inline void mcmf(int s, int t) {
while(spfa(s, t)) {
flow += f[t]; cost += f[t] * dis[t];
for(int i = t; i != s; i = pre[i]) {
gra[pree[i]].cap -= f[t]; gra[pree[i] ^ 1].cap += f[t];
}
}
}
const int fix[][8] = {{-1, 1, -1, 1, -1, 1, 0, 0}, {0, 0, -1, 1, 1, -1, -1, 1}};
int n, m, cnt, st[25][25], ed[25][25], lim[25][25], S, T;
int main() {
memset(head, -1, sizeof(head));
n = readint(); m = readint(); S = n * m * 3 + 1; T = S + 1;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
st[i][j] = readdigit();
if(st[i][j]) cnt++;
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
ed[i][j] = readdigit();
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
lim[i][j] = readdigit();
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(st[i][j]) addedge(S, (i - 1) * m + j, 1, 0);
if(ed[i][j]) addedge((i - 1) * m + j, T, 1, 0);
if(st[i][j] && !ed[i][j]) {
addedge(n * m + (i - 1) * m + j, (i - 1) * m + j, lim[i][j] / 2, 1);
addedge((i - 1) * m + j, n * m * 2 + (i - 1) * m + j, (lim[i][j] + 1) / 2, 0);
} else if(!st[i][j] && ed[i][j]) {
addedge(n * m + (i - 1) * m + j, (i - 1) * m + j, (lim[i][j] + 1) / 2, 1);
addedge((i - 1) * m + j, n * m * 2 + (i - 1) * m + j, lim[i][j] / 2, 0);
} else {
addedge(n * m + (i - 1) * m + j, (i - 1) * m + j, lim[i][j] / 2, 1);
addedge((i - 1) * m + j, n * m * 2 + (i - 1) * m + j, lim[i][j] / 2, 0);
}
for(int k = 0; k < 8; k++) {
int nx = i + fix[0][k], ny = j + fix[1][k];
if(nx < 1 || nx > n || ny < 1 || ny > m) continue;
addedge(n * m * 2 + (i - 1) * m + j, n * m + (nx - 1) * m + ny, INF, 0);
}
}
}
mcmf(S, T);
printf("%d", flow >= cnt ? cost : -1);
return 0;
}
题目地址:洛谷:【P2153】[SDOI2009]晨跑 – 洛谷、BZOJ:Problem 1877. — [SDOI2009]晨跑
Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑。现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路口。Elaxia耐力不太好,他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。
存在 1→n 的边存在。这种情况下,这条边只能走一次。
输入格式:
第一行:两个数N,M。表示十字路口数和街道数。 接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。
输出格式:
两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。
输入样例#1:
7 10 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 2 5 5 3 6 6 5 7 1 6 7 1
输出样例#1:
2 11
对于30%的数据,N ≤ 20,M ≤ 120。
对于100%的数据,N ≤ 200,M ≤ 20000。
打个MCMF板子练练手。
最小费用最大流的裸题,对每个点拆点限制流量为1即可,天数就是最大流,路程长度就是费用。注意1和n两个点不能拆点,加边的时候特判一下。
// Code by KSkun, 2018/5
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#include <queue>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
register char c = fgc();
while(!isdigit(c)) {
if(c == '-') neg = -1;
c = fgc();
}
while(isdigit(c)) {
res = (res << 1) + (res << 3) + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, cap, cost, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
inline void addedge(int u, int v, int cap, int cost) {
gra[tot] = Edge {v, cap, cost, head[u]}; head[u] = tot++;
gra[tot] = Edge {u, 0, -cost, head[v]}; head[v] = tot++;
}
int n, m;
int dis[MAXN], f[MAXN], pre[MAXN], pree[MAXN];
std::queue<int> que;
bool inque[MAXN];
inline bool spfa(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memset(f, 0, sizeof(f));
dis[s] = 0; f[s] = INF; inque[s] = true; que.push(s);
while(!que.empty()) {
int u = que.front(); que.pop(); inque[u] = false;
for(int i = head[u]; ~i; i = gra[i].nxt) {
int v = gra[i].to;
if(gra[i].cap > 0 && dis[v] > dis[u] + gra[i].cost) {
dis[v] = dis[u] + gra[i].cost;
f[v] = std::min(gra[i].cap, f[u]);
pre[v] = u; pree[v] = i;
if(!inque[v]) {
inque[v] = true; que.push(v);
}
}
}
}
return f[t] != 0;
}
int flow, cost;
inline void mcmf(int s, int t) {
while(spfa(s, t)) {
for(int i = t; i != s; i = pre[i]) {
gra[pree[i]].cap -= f[t];
gra[pree[i] ^ 1].cap += f[t];
}
flow += f[t]; cost += dis[t] * f[t];
}
}
int a, b, c;
int main() {
memset(head, -1, sizeof(head));
n = readint(); m = readint();
for(int i = 2; i < n; i++) {
addedge(i, i + n, 1, 0);
}
for(int i = 1; i <= m; i++) {
a = readint(); b = readint(); c = readint();
if(a == 1) addedge(1, b, 1, c);
else addedge(a + n, b, 1, c);
}
mcmf(1, n);
printf("%d %d", flow, cost);
return 0;
}
题目地址:洛谷:【P4249】[WC2007]剪刀石头布 – 洛谷、BZOJ:Problem 2597. — [Wc2007]剪刀石头布
在一些一对一游戏的比赛(如下棋、乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之为剪刀石头布情况。有的时候,无聊的人们会津津乐道于统计有多少这样的剪刀石头布情况发生,即有多少对无序三元组(A, B, C),满足其中的一个人在比赛中赢了另一个人,另一个人赢了第三个人而第三个人又胜过了第一个人。注意这里无序的意思是说三元组中元素的顺序并不重要,将(A, B, C)、(A, C, B)、(B, A, C)、(B, C, A)、(C, A, B)和(C, B, A)视为相同的情况。
有N个人参加一场这样的游戏的比赛,赛程规定任意两个人之间都要进行一场比赛:这样总共有场比赛。比赛已经进行了一部分,我们想知道在极端情况下,比赛结束后最多会发生多少剪刀石头布情况。即给出已经发生的比赛结果,而你可以任意安排剩下的比赛的结果,以得到尽量多的剪刀石头布情况。
输入格式:
输入文件的第1行是一个整数N,表示参加比赛的人数。
之后是一个N行N列的数字矩阵:一共N行,每行N列,数字间用空格隔开。
在第(i+1)行的第j列的数字如果是1,则表示i在已经发生的比赛中赢了j;该数字若是0,则表示在已经发生的比赛中i败于j;该数字是2,表示i和j之间的比赛尚未发生。数字矩阵对角线上的数字,即第(i+1)行第i列的数字都是0,它们仅仅是占位符号,没有任何意义。
输入文件保证合法,不会发生矛盾,当i≠j时,第(i+1)行第j列和第(j+1)行第i列的两个数字要么都是2,要么一个是0一个是1。
输出格式:
输出文件的第1行是一个整数,表示在你安排的比赛结果中,出现了多少剪刀石头布情况。
输出文件的第2行开始有一个和输入文件中格式相同的N行N列的数字矩阵。第(i+1)行第j个数字描述了i和j之间的比赛结果,1表示i赢了j,0表示i负于j,与输入矩阵不同的是,在这个矩阵中没有表示比赛尚未进行的数字2;对角线上的数字都是0。输出矩阵要保证合法,不能发生矛盾。
输入样例#1:
3 0 1 2 0 0 2 2 2 0
输出样例#1:
1 0 1 0 0 0 1 1 0 0
【评分标准】
对于每个测试点,仅当你的程序的输出第一行的数字和标准答案一致,且给出了一个与之一致的合法方案,你才能得到该测试点的满分,否则该测试点得0分。
【数据范围】
30%的数据中,N≤6;
100%的数据中,N≤100。
考虑一下这样的三元组的相关性质,比如:1.这是个三元环,好像没用。2.三元组构成的子图中,所有点的入度/出度都是1,好像也没用。正难则反,我们考虑一下不符合条件的三元组,则子图中存在点的入度为2,也存在点的入度为0,出度也有类似性质。我们不妨考虑入度,假如点i的入度为d_i,则不合法的三元组个数是\sum_{i=1}^n \mathrm{C}_{d_i}^2,这是因为任意选择两个有出边连向i的点与i组成三元组都是不合法的,而且由于是有向图,这个统计并不会重复。现在我们有办法求出不合法的三元组个数了,用总三元组数减去它就是合法的三元组数了,即答案是
\mathrm{C}_n^3 - \sum_{i=1}^n \mathrm{C}_{d_i}^2
其中
\mathrm{C}_n^3 = \frac{n(n-1)(n-2)}{6}
我们考虑一条不确定的边对它所连接的两个点的入度造成的影响,以及对答案造成的影响。实际上一条不确定的边会导致它连接的两个点其中一个点的入度+1,而我们知道有
\mathrm{C}_n^2 - \mathrm{C}_{n-1}^2 = n-1
这就是一个费用递增的模型!我们可以建立源→不确定的边→原图中的点→汇的网络。其中源→不确定的边→原图中的点的所有边为容量1费用0的边,表示选择一种方案。而用原图中的点→汇的边来表示费用递增,即设置为容量1费用从确定的入度到入度上限的一系列边,每一条边表示入度+1对答案的贡献。在这个网络中跑最小费用最大流即可。
对于输出方案,我们检查不确定的边在网络中的对应点的出边,看流流向了哪边,就可以确定该边在方案中的方向。
// Code by KSkun, 2018/4
#include <cstdio>
#include <cstring>
#include <queue>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF
: *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, cap, cost, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
inline void addedge(int u, int v, int cap, int cost) {
gra[tot] = Edge {v, cap, cost, head[u]}; head[u] = tot++;
gra[tot] = Edge {u, 0, -cost, head[v]}; head[v] = tot++;
}
int f[MAXN], dis[MAXN], pre[MAXN], pree[MAXN];
std::queue<int> que;
bool inque[MAXN];
inline bool spfa(int s, int t) {
memset(f, 0, sizeof(f));
memset(dis, 0x3f, sizeof(dis));
dis[s] = 0; inque[s] = true; f[s] = INF; que.push(s);
while(!que.empty()) {
int u = que.front(); que.pop(); inque[u] = false;
for(int i = head[u]; ~i; i = gra[i].nxt) {
int v = gra[i].to;
if(gra[i].cap > 0 && dis[v] > dis[u] + gra[i].cost) {
pre[v] = u; pree[v] = i;
f[v] = std::min(f[u], gra[i].cap);
dis[v] = dis[u] + gra[i].cost;
if(!inque[v]) {
inque[v] = true;
que.push(v);
}
}
}
}
return f[t];
}
int flow, cost;
inline void mcmf(int s, int t) {
while(spfa(s, t)) {
for(int i = t; i != s; i = pre[i]) {
gra[pree[i]].cap -= f[t];
gra[pree[i] ^ 1].cap += f[t];
}
flow += f[t];
cost += f[t] * dis[t];
}
}
int n, m, mmp[105][105], deg[105], S, T;
// 1 ~ n point
// n+1 ~ edge
int main() {
memset(head, -1, sizeof(head));
m = n = readint();
S = n * n + 1; T = S + 1;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
mmp[i][j] = readint();
if(mmp[i][j] == 2 && i < j) {
addedge(S, ++m, 1, 0);
addedge(m, i, 1, 0);
addedge(m, j, 1, 0);
} else if(mmp[i][j] == 1) {
deg[j]++;
}
}
}
for(int i = 1; i <= n; i++) {
cost += deg[i] * (deg[i] - 1) / 2;
for(int j = deg[i]; j < n - 1; j++) {
addedge(i, T, 1, j);
}
}
mcmf(S, T);
printf("%d\n", n * (n - 1) * (n - 2) / 6 - cost);
m = n;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(mmp[i][j] == 2) {
int to;
for(int k = head[++m]; ~k; k = gra[k].nxt) {
if(gra[k].cap == 0) {
to = gra[k].to;
break;
}
}
if(to == j) {
mmp[i][j] = 1; mmp[j][i] = 0;
} else if(to == i) {
mmp[j][i] = 1; mmp[i][j] = 0;
}
}
printf("%d ", mmp[i][j]);
}
puts("");
}
return 0;
}