[SPOJ-QTREE5]Query on a tree V 题解
题目地址:ė …
May all the beauty be blessed.
题目地址:洛谷:【SP1487】PT07J – Query on a tree III – 洛谷、SPOJ:SPOJ.com – Problem PT07J
SPOJ QTREE系列:
You are given a node-labeled rooted tree with n nodes.
Define the query (x, k): Find the node whose label is k-th largest in the subtree of the node x. Assume no two nodes have the same labels.
给一棵带点权的以1为根的有根树,查询某子树内点权第k小值。
输入格式:
The first line contains one integer n (1 <= n <= 105). The next line contains n integers li (0 <= li <= 109) which denotes the label of the i-th node.
Each line of the following n – 1 lines contains two integers u, v. They denote there is an edge between node u and node v. Node 1 is the root of the tree.
The next line contains one integer m (1 <= m <= 104) which denotes the number of the queries. Each line of the next m contains two integers x, k. (k <= the total node number in the subtree of x)
输出格式:
For each query (x, k), output the index of the node whose label is the k-th largest in the subtree of the node x.
输入样例#1:
5 1 3 5 2 7 1 2 2 3 1 4 3 5 4 2 3 4 1 3 2 3 2
输出样例#1:
5 4 5 5
DFS序+主席树。主席树的叶子节点可以存一下DFS序号,这样方便查。
// Code by KSkun, 2018/3
#include <cstdio>
#include <vector>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF
: *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005;
std::vector<int> gra[MAXN];
int dfn[MAXN], ptn[MAXN], siz[MAXN], clk;
inline void dfs(int u, int fa) {
dfn[u] = ++clk;
ptn[dfn[u]] = u;
siz[u] = 1;
for(int v : gra[u]) {
if(v == fa) continue;
dfs(v, u);
siz[u] += siz[v];
}
}
struct SGT {
struct SGTNode {
int lch, rch, val, dfn;
} tr[MAXN * 20];
int rt[MAXN], cnt = 0;
inline void insert(int &o, int l, int r, int x, int dfn) {
tr[++cnt] = tr[o]; o = cnt;
tr[o].val++;
if(l == r) {
tr[o].dfn = dfn;
return;
}
int mid = (l + r) >> 1;
if(x <= mid) insert(tr[o].lch, l, mid, x, dfn);
else insert(tr[o].rch, mid + 1, r, x, dfn);
}
inline int query(int o1, int o2, int l, int r, int k) {
if(l == r) return ptn[tr[o2].dfn];
int mid = (l + r) >> 1;
if(k <= tr[tr[o2].lch].val - tr[tr[o1].lch].val) {
return query(tr[o1].lch, tr[o2].lch, l, mid, k);
} else {
k -= tr[tr[o2].lch].val - tr[tr[o1].lch].val;
return query(tr[o1].rch, tr[o2].rch, mid + 1, r, k);
}
}
} sgt;
int n, m, w[MAXN], ut, vt, xt, kt;
std::vector<int> tmp;
int main() {
n = readint();
tmp.push_back(-1);
for(int i = 1; i <= n; i++) {
w[i] = readint();
tmp.push_back(w[i]);
}
std::sort(tmp.begin(), tmp.end());
tmp.erase(std::unique(tmp.begin(), tmp.end()), tmp.end());
int N = tmp.size() - 1;
for(int i = 1; i <= n; i++) {
w[i] = std::lower_bound(tmp.begin(), tmp.end(), w[i]) - tmp.begin();
}
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint();
gra[ut].push_back(vt);
gra[vt].push_back(ut);
}
dfs(1, 0);
for(int i = 1; i <= n; i++) {
sgt.rt[i] = sgt.rt[i - 1];
sgt.insert(sgt.rt[i], 1, N, w[ptn[i]], i);
}
m = readint();
while(m--) {
xt = readint(); kt = readint();
printf("%d\n", sgt.query(sgt.rt[dfn[xt] - 1], sgt.rt[dfn[xt] + siz[xt] - 1],
1, N, kt));
}
return 0;
}
题目地址:洛谷:【SP375】QTREE – Query on a tree – 洛谷、SPOJ:SPOJ.com – Problem QTREE
SPOJ QTREE系列:
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3…N-1.
We will ask you to perfrom some instructions of the following form:
给一棵带边权的树,操作1.改边权2.求路径上最大边权。
输入格式:
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
There is one blank line between successive tests.
输出格式:
For each “QUERY” operation, write one integer representing its result.
输入样例#1:
1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE
输出样例#1:
1 3
考虑树链剖分,把每条边的权值记在较深的那个点上即可。剩下的就是板子。注意查询的时候LCA不能计算进去。
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
inline int max(int a, int b) {
return a > b ? a : b;
}
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
inline bool isop(char c) {
return c == 'Q' || c == 'C' || c == 'D';
}
inline char readop() {
register char c;
while(!isop(c = fgc()));
return c;
}
const int MAXN = 10005;
struct Edge {
int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
int T, n, m, ut, vt, wt;
char op;
int w[MAXN], fa[MAXN], siz[MAXN], son[MAXN], dfn[MAXN], ptn[MAXN], top[MAXN], dep[MAXN], cnt;
inline void dfs1(int u) {
siz[u] = 1;
son[u] = 0;
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
w[v] = gra[i].w;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++cnt;
ptn[dfn[u]] = u;
if(son[u]) dfs2(son[u], tp);
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
int sgt[MAXN << 2];
inline void build(int o, int l, int r) {
if(l == r) {
sgt[o] = w[ptn[l]];
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
build(lch, l, mid);
build(rch, mid + 1, r);
sgt[o] = max(sgt[lch], sgt[rch]);
}
inline void modify(int o, int l, int r, int x, int v) {
if(l == r) {
sgt[o] = v;
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
if(x <= mid) modify(lch, l, mid, x, v);
else modify(rch, mid + 1, r, x, v);
sgt[o] = max(sgt[lch], sgt[rch]);
}
inline int query(int o, int l, int r, int ll, int rr) {
if(l >= ll && r <= rr) {
return sgt[o];
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1, res = 0;
if(ll <= mid) res = max(res, query(lch, l, mid, ll, rr));
if(rr > mid) res = max(res, query(rch, mid + 1, r, ll, rr));
return res;
}
inline int query(int u, int v) {
register int res = 0, tu = top[u], tv = top[v], t;
while(tu != tv) {
if(dep[tu] > dep[tv]) {
t = tu; tu = tv; tv = t;
t = u; u = v; v = t;
}
res = max(res, query(1, 1, n, dfn[tv], dfn[v]));
v = fa[tv];
tv = top[v];
}
if(dep[u] > dep[v]) { t = u; u = v; v = t; }
if(u != v) res = max(res, query(1, 1, n, dfn[u] + 1, dfn[v]));
return res;
}
struct Edge1 {
int u, v, w;
} edge[MAXN];
int main() {
T = readint();
while(T--) {
tot = cnt = 0;
memset(head, 0, sizeof(head));
n = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint(); wt = readint();
edge[i] = Edge1 {ut, vt, wt};
gra[++tot] = Edge {vt, wt, head[ut]};
head[ut] = tot;
gra[++tot] = Edge {ut, wt, head[vt]};
head[vt] = tot;
}
dfs1(1);
dfs2(1, 1);
build(1, 1, n);
for(;;) {
op = readop();
if(op == 'D') break;
ut = readint();
vt = readint();
if(op == 'Q') {
printf("%d\n", query(ut, vt));
} else {
register int u = dep[edge[ut].u] > dep[edge[ut].v] ? edge[ut].u : edge[ut].v;
modify(1, 1, n, dfn[u], vt);
}
}
}
return 0;
}
题目地址:CodeChef:Elephant | CodeChef
Pattaya 的大象跳舞表演非常有名。整个表演中,N 只大象站成一排跳舞。
经过多年的训练,大象们能够在表演时做很多迷人的舞蹈动作。表演由一系列的动作组成。在每个动作中,只有一只大象可能会移动到一个新的位置上。
大象表演的组织者想要拍摄一本包括全部动作的相册。在每个动作之后,他们要拍摄到所有的大象。
在表演中的任何时刻,多只大象可能站在同一个位置上。在这种情况下,在同一个位置上的大象会从前到后站成一排。
一架相机的拍摄宽度为 L(包括两个端点),即一架相机可以拍摄到位于连续的 L+1 个位置上的大象(有些位置可能没有大象)。因为舞台比较大,所以需要多架相机才能同时拍摄到所有的大象。
在这个题目中,你需要确定每一个动作之后,至少需要多少架相机才能同时拍摄到全部的大象。注意,所需相机的最小数目会随着动作的进行而增加、减少或者保持不变。
输入格式:
第一行N、M、L。
下面N行表示大象的初始位置。
下面M行一行两个整数,第i只大象到了Pi位置。
输出格式:
每次动作后输出最少相机数。
输入样例#1:
4 10 5 10 15 17 20 2 16 1 25 3 35 0 38 2 0
输出样例#1:
1 2 2 2 3
输入样例#2:
2 12321 3 2 123 1 76543 0 66321 0 78754
输出样例#2:
2 1 1
1≤N≤150000
如果不改变大象的位置,我们考虑怎么解决。我们从第一只大象开始,每次设置一只摄像机来覆盖L距离内的大象,然后往后找第一只没有被覆盖的大象,再设置相机。最后统计设置了多少相机即可。
现在我们需要改变大象的位置,又不能每一次全部扫一遍,自然需要一个快速统计答案的方法。首先我们考虑一种建图方法,先将所有可能出现大想的位置离散化出来,对于相邻位置连边。每增加一只大象,切断该点与后面的点的边,并且连边至超过L距离的第一个点。将有大象的点的点权设置为1,没有的为0,统计起点到终点的路径点权和即为答案。我们考虑可以用LCT来维护这个图,因为上面不可能有环,每次实际上维护的是一棵树。LCT的功能能够满足我们的需求。
以下代码参考了这个Solution:Solution: 16828126 | CodeChef,感谢原作者kazuma。
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 1000005, INF = 1e9;
struct LCTNode {
int ch[2], fa, val, sum;
bool rev;
} lct[MAXN];
inline bool isleft(int p) {
return lct[lct[p].fa].ch[0] == p;
}
inline bool isroot(int p) {
register int fa = lct[p].fa;
return lct[fa].ch[0] != p && lct[fa].ch[1] != p;
}
inline void update(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
lct[p].sum = lct[p].val + lct[ls].sum + lct[rs].sum;
}
inline void reverse(int p) {
std::swap(lct[p].ch[0], lct[p].ch[1]);
lct[p].rev ^= 1;
}
inline void pushdown(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
if(lct[p].rev) {
if(ls) reverse(ls);
if(rs) reverse(rs);
lct[p].rev ^= 1;
}
}
int sta[MAXN], stop;
inline void pushto(int p) {
stop = 0;
while(!isroot(p)) {
sta[stop++] = p;
p = lct[p].fa;
}
pushdown(p);
while(stop) {
pushdown(sta[--stop]);
}
}
inline void rotate(int p) {
register bool t = !isleft(p); register int fa = lct[p].fa, ffa = lct[fa].fa;
lct[p].fa = ffa; if(!isroot(fa)) lct[ffa].ch[!isleft(fa)] = p;
lct[fa].ch[t] = lct[p].ch[!t]; lct[lct[fa].ch[t]].fa = fa;
lct[p].ch[!t] = fa; lct[fa].fa = p;
update(fa);
}
inline void splay(int p) {
pushto(p);
for(register int fa = lct[p].fa; !isroot(p); rotate(p), fa = lct[p].fa) {
if(!isroot(fa)) rotate(isleft(fa) == isleft(p) ? fa : p);
}
update(p);
}
inline void access(int p) {
for(register int q = 0; p; q = p, p = lct[p].fa) {
splay(p);
lct[p].ch[1] = q;
update(p);
}
}
inline void makert(int p) {
access(p);
splay(p);
reverse(p);
}
inline int findrt(int p) {
access(p);
splay(p);
while(lct[p].ch[0]) p = lct[p].ch[0];
return p;
}
inline void split(int u, int v) {
makert(u);
access(v);
splay(v);
}
inline void link(int u, int v) {
split(u, v);
lct[u].fa = v;
}
inline void cut(int u, int v) {
split(u, v);
if(lct[v].ch[0] != u || lct[lct[v].ch[0]].ch[1]) return;
lct[u].fa = lct[v].ch[0] = 0;
}
inline int query(int u, int v) {
split(u, v);
return lct[v].sum;
}
inline void modify(int u, int w) {
access(u);
splay(u);
lct[u].val = w;
update(u);
}
int n, l, m, p[MAXN], x[MAXN], y[MAXN], cnt[MAXN];
std::vector<int> vec;
int main() {
n = readint(); l = readint(); m = readint();
vec.push_back(-1);
vec.push_back(2e9);
for(int i = 1; i <= n; i++) {
p[i] = readint();
vec.push_back(p[i]);
vec.push_back(p[i] + l + 1);
}
for(int i = 1; i <= m; i++) {
x[i] = readint() + 1; y[i] = readint();
vec.push_back(y[i]);
vec.push_back(y[i] + l + 1);
}
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
int siz = vec.size();
for(int i = 2; i <= siz; i++) {
link(i - 1, i);
}
for(int i = 1; i <= n; i++) {
int u = std::lower_bound(vec.begin(), vec.end(), p[i]) - vec.begin(),
v = std::lower_bound(vec.begin(), vec.end(), p[i] + l + 1) - vec.begin();
if(!cnt[u]) {
cut(u, u + 1);
link(u, v);
modify(u, 1);
}
cnt[u]++;
}
for(int i = 1; i <= m; i++) {
int ou = std::lower_bound(vec.begin(), vec.end(), p[x[i]]) - vec.begin(),
ov = std::lower_bound(vec.begin(), vec.end(), p[x[i]] + l + 1) - vec.begin(),
u = std::lower_bound(vec.begin(), vec.end(), y[i]) - vec.begin(),
v = std::lower_bound(vec.begin(), vec.end(), y[i] + l + 1) - vec.begin();
cnt[ou]--;
if(!cnt[ou]) {
cut(ou, ov);
link(ou, ou + 1);
modify(ou, 0);
}
if(!cnt[u]) {
cut(u, u + 1);
link(u, v);
modify(u, 1);
}
cnt[u]++;
p[x[i]] = y[i];
printf("%d\n", query(1, siz));
}
return 0;
}