[SPOJ-QTREE4]Query on a tree IV 题解
题目地址:洛谷:【SP2666】QTREE4 – Query on a tre …
May all the beauty be blessed.
题目地址:SPOJ:SPOJ.com – Problem QTREE3
SPOJ QTREE系列:
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N. In the start, the color of any node in the tree is white.
We will ask you to perfrom some instructions of the following form:
给一棵树,初始点全是白色,操作1.更改点的颜色(白->黑,黑->白)2.求1~v路径上第一个为黑色的点,不存在输出-1。
输入格式:
In the first line there are two integers N and Q.
In the next N-1 lines describe the edges in the tree: a line with two integers a b denotes an edge between a and b.
The next Q lines contain instructions “0 i” or “1 v” (1 ≤ i, v ≤ N).
输出格式:
For each “1 v” operation, write one integer representing its result.
输入样例#1:
9 8 1 2 1 3 2 4 2 9 5 9 7 9 8 9 6 8 1 3 0 8 1 6 1 7 0 2 1 9 0 2 1 9
输出样例#1:
-1 8 -1 2 -1
There are 12 real input files.
For 1/3 of the test cases, N=5000, Q=400000.
For 1/3 of the test cases, N=10000, Q=300000.
For 1/3 of the test cases, N=100000, Q=100000.
线段树存一段上深度最小的黑色点的编号。直接查即可。
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
int n, q, ut, vt, op;
int fa[MAXN], siz[MAXN], son[MAXN], dfn[MAXN], ptn[MAXN], top[MAXN], dep[MAXN], cnt, col[MAXN];
inline void dfs1(int u) {
siz[u] = 1;
son[u] = 0;
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++cnt;
ptn[dfn[u]] = u;
if(son[u]) dfs2(son[u], tp);
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
int sgt[MAXN << 2];
inline void modify(int o, int l, int r, int x, int v) {
if(l == r) {
if(v) sgt[o] = ptn[l];
else sgt[o] = 0;
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
if(x <= mid) modify(lch, l, mid, x, v);
else modify(rch, mid + 1, r, x, v);
sgt[o] = dep[sgt[lch]] < dep[sgt[rch]] ? sgt[lch] : sgt[rch];
}
inline int query(int o, int l, int r, int ll, int rr) {
if(l >= ll && r <= rr) {
return sgt[o];
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
register int resl = 0, resr = 0;
if(ll <= mid) resl = query(lch, l, mid, ll, rr);
if(rr > mid) resr = query(rch, mid + 1, r, ll, rr);
return dep[resl] < dep[resr] ? resl : resr;
}
inline int query(int u) {
int tu = top[u], ans = -1, res;
while(tu) {
res = query(1, 1, n, dfn[tu], dfn[u]);
if(res) ans = res;
u = fa[tu];
tu = top[u];
}
return ans;
}
inline void addedge(int u, int v) {
gra[++tot] = Edge {v, head[u]};
head[u] = tot;
}
int main() {
dep[0] = INF;
n = readint(); q = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint();
addedge(ut, vt);
addedge(vt, ut);
}
dfs1(1);
dfs2(1, 1);
while(q--) {
op = readint();
ut = readint();
if(op == 0) {
col[ut] ^= 1;
modify(1, 1, n, dfn[ut], col[ut]);
} else {
printf("%d\n", query(ut));
}
}
return 0;
}
题目地址:BZOJ:Problem 3514. — Codechef MARCH14 GERALD07加强版
N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。
输入格式:
第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。
接下来M行,代表图中的每条边。
接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。
输出格式:
K行每行一个整数代表该组询问的联通块个数。
输入样例#1:
3 5 4 0 1 3 1 2 2 1 3 2 2 2 2 3 1 5 5 5 1 2
输出样例#1:
2 1 3 1
对于100%的数据,1≤N、M、K≤200,000。
2016.2.26提高时限至60s
首先这题强制在线了。考虑原来的GERALD07是怎么做的,用LCT来维护生成树,LCT记录下当前连通块内编号最小的边,离线处理答案,权值线段树来查符合条件的边数,答案即为n-边数。该题链接见:[CC-GERALD07]Chef and Graph Queries 题解 | KSkun’s Blog。
现在搞在线了怎么搞,那我们考虑把权值线段树改成主席树,然后查另外一个答案。我们在加边的过程中检查是否成环,成环了就把环中编号最小的边给删掉,然后把这条边的编号记下来。对于编号为[l, r]的边,问题的答案即n-这一段编号的边插入的时候删掉的编号小于l的边的数量。
下面我们证明它的正确性。对于一个加边时删边编号不小于l的边,其实删不删这一块本来就是连通的,并不能对答案产生贡献;反过来,删掉了前面那条边,其实这里并不连通了,此时把这条边加上以后变联通,其实对答案来说有-1的贡献。
至于n-的原因,如果原始有n个点没有边,那就是n个连通块,此时加1条边,就会合并掉某两个连通块,答案变为n-1,以此类推。
这个代码的常数巨大,复杂度没有用,就算BZOJ开了60s我也是蹭着限制AC的,太吓人了。
// Code by KSkun, 2018/3
#include <cstdio>
inline void swap(int &a, int &b) {
register int t = a;
a = b;
b = t;
}
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 400005, INF = 1e9;
struct LCTNode {
int ch[2], fa, val, mn;
bool rev;
} lct[MAXN];
inline bool isleft(int p) {
return lct[lct[p].fa].ch[0] == p;
}
inline bool isroot(int p) {
register int fa = lct[p].fa;
return lct[fa].ch[0] != p && lct[fa].ch[1] != p;
}
inline void update(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
lct[p].mn = p;
if(lct[lct[ls].mn].val < lct[lct[p].mn].val) lct[p].mn = lct[ls].mn;
if(lct[lct[rs].mn].val < lct[lct[p].mn].val) lct[p].mn = lct[rs].mn;
}
inline void reverse(int p) {
swap(lct[p].ch[0], lct[p].ch[1]);
lct[p].rev ^= 1;
}
inline void pushdown(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
if(lct[p].rev) {
if(ls) reverse(ls);
if(rs) reverse(rs);
lct[p].rev ^= 1;
}
}
int sta[MAXN], stop;
inline void pushto(int p) {
stop = 0;
while(!isroot(p)) {
sta[stop++] = p;
p = lct[p].fa;
}
pushdown(p);
while(stop) {
pushdown(sta[--stop]);
}
}
inline void rotate(int p) {
register bool t = !isleft(p); register int fa = lct[p].fa, ffa = lct[fa].fa;
lct[p].fa = ffa; if(!isroot(fa)) lct[ffa].ch[!isleft(fa)] = p;
lct[fa].ch[t] = lct[p].ch[!t]; lct[lct[fa].ch[t]].fa = fa;
lct[p].ch[!t] = fa; lct[fa].fa = p;
update(fa);
}
inline void splay(int p) {
pushto(p);
for(register int fa = lct[p].fa; !isroot(p); rotate(p), fa = lct[p].fa) {
if(!isroot(fa)) rotate(isleft(fa) == isleft(p) ? fa : p);
}
update(p);
}
inline void access(int p) {
for(register int q = 0; p; q = p, p = lct[p].fa) {
splay(p);
lct[p].ch[1] = q;
update(p);
}
}
inline void makert(int p) {
access(p);
splay(p);
reverse(p);
}
inline int findrt(int p) {
access(p);
splay(p);
while(lct[p].ch[0]) p = lct[p].ch[0];
return p;
}
inline void split(int u, int v) {
makert(u);
access(v);
splay(v);
}
inline void link(int u, int v) {
split(u, v);
lct[u].fa = v;
}
inline void cut(int u, int v) {
split(u, v);
if(lct[v].ch[0] != u || lct[lct[v].ch[0]].ch[1]) return;
lct[u].fa = lct[v].ch[0] = 0;
}
inline int query(int u, int v) {
split(u, v);
return lct[v].mn;
}
struct SGTNode {
int val, lch, rch;
} sgt[MAXN * 20];
int stot = 0, rt[MAXN];
inline void insert(int &o, int l, int r, int x) {
sgt[++stot] = sgt[o]; o = stot;
sgt[o].val++;
if(l == r) return;
register int mid = (l + r) >> 1;
if(x <= mid) insert(sgt[o].lch, l, mid, x);
else insert(sgt[o].rch, mid + 1, r, x);
}
inline int query(int o1, int o2, int l, int r, int rr) {
if(r == rr) return sgt[o2].val - sgt[o1].val;
register int mid = (l + r) >> 1;
if(rr <= mid) return query(sgt[o1].lch, sgt[o2].lch, l, mid, rr);
else return sgt[sgt[o2].lch].val - sgt[sgt[o1].lch].val + query(sgt[o1].rch, sgt[o2].rch, mid + 1, r, rr);
}
int n, m, q, type, ut, vt, lst[MAXN], u[MAXN], v[MAXN];
int main() {
n = readint(); m = readint(); q = readint(); type = readint();
lct[0].val = INF;
for(register int i = 1; i <= n; i++) {
lct[i].mn = i;
lct[i].val = INF;
}
register int tot = n;
for(register int i = 1; i <= m; i++) {
ut = u[i] = readint(); vt = v[i] = readint();
if(ut == vt) {
lst[i] = i;
continue;
}
if(findrt(ut) == findrt(vt)) {
int t = query(ut, vt), tv = lct[t].val;
lst[i] = tv;
cut(u[tv], t);
cut(v[tv], t);
}
tot++;
lct[tot].mn = tot;
lct[tot].val = i;
link(ut, tot);
link(vt, tot);
}
for(register int i = 1; i <= m; i++) {
rt[i] = rt[i - 1];
insert(rt[i], 0, m, lst[i]);
}
register int lastans = 0;
while(q--) {
ut = readint(); vt = readint();
if(type) {
ut ^= lastans;
vt ^= lastans;
}
printf("%d\n", lastans = n - query(rt[ut - 1], rt[vt], 0, m, ut - 1));
}
return 0;
}