标签: 权值线段树

[NOIP2013提高]花匠 题解

[NOIP2013提高]花匠 题解

题目地址:洛谷:P1970 花匠 – 洛谷 | 计算机科学教育新生态 题目描述 

[BZOJ3685]普通van Emde Boas树 题解

[BZOJ3685]普通van Emde Boas树 题解

题目地址:BZOJ:Problem 3685. — 普通van Emde Bo 

[BZOJ3551][ONTAK2010]Peaks加强版 题解

[BZOJ3551][ONTAK2010]Peaks加强版 题解

题目地址:BZOJ:Problem 3551. — [ONTAK2010]Peaks加强版

题目描述

在Bytemountains有N座山峰,每座山峰有他的高度h_i。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。

题意简述

有一个图,点和边都有权值。回答若干询问,每个询问表示只保留图中边权不大于x的边,v所在的连通块中,点权k大。强制在线。

输入输出格式

输入格式:
第一行三个数N,M,Q。
第二行N个数,第i个数为h_i
接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径。
接下来Q行,每行三个数v x k,表示一组询问。v=v xor lastans,x=x xor lastans,k=k xor lastans。如果lastans=-1则不变。

输出格式:
对于每组询问,输出一个整数表示答案。

输入输出样例

输入样例#1:

10 11 4
1 2 3 4 5 6 7 8 9 10
1 4 4
2 5 3
9 8 2
7 8 10
7 1 4
6 7 1
6 4 8
2 1 5
10 8 10
3 4 7
3 4 6
1 5 2
7 3 0
0 4 9
9 8 3

输出样例#1:

6
1
-1
8

说明

【数据范围】
N<=10^5, M,Q<=5*10^5,h_i,c,x<=10^9。

题解

参考资料:BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树] – Candy? – 博客园
强制在线之前的离线做法就不行了。这里要用新的科技:Kruskal重构树。
首先,连通块的边肯定在最小生成树上比较优,因此我们可以跑一波Kruskal处理。在Kruskal选中一条边的时候,对这条边开一个点,把边权放在点上,再从点引出两条边,指向边的端点的并查集集合代表元,将这条边的点设为这两个集合的并集代表元。
这样建出来的树有优秀的性质:

  1. 二叉树,因为边有两个端点
  2. 越浅的边点边权越大
  3. 叶子(无出边的点)是原图中的点,其他的都是边点
  4. 两点间路径上边权最大的边点是LCA
  5. 一个边点对应的子树代表一个边权不大于该边点的边组成的连通块
  6. 边权最大的边点是有根树的根

这里我们会用到第5条。一个查询就是在找v的边权不大于询问的最浅边点祖先,在该祖先的子树内找k大,这个显然可以DFS序建主席树做。
注意本地开够栈,DFS的规模会相当大。复杂度是O(n \log n)

代码

// Code by KSkun, 2018/6
#include <cstdio>
#include <cctype>

#include <algorithm>
#include <vector>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2)
        ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1; register char c = fgc();
    for(; !isdigit(c); c = fgc()) if(c == '-') neg = -1;
    for(; isdigit(c); c = fgc()) res = (res << 1) + (res << 3) + c - '0';
    return res * neg;
}

const int MAXN = 200005, MAXM = 500005;

int n, m, q, N;

int fa[MAXN];

inline int find(int x) {
    return x == fa[x] ? x : fa[x] = find(fa[x]);
}

struct Node {
    int lch, rch, val;
} tr[MAXN << 4];
int rt[MAXN], tot;

inline void insert(int &o, int l, int r, int x) {
    tr[++tot] = tr[o]; o = tot;
    tr[o].val++;
    if(l == r) return;
    int mid = (l + r) >> 1;
    if(x <= mid) insert(tr[o].lch, l, mid, x);
    else insert(tr[o].rch, mid + 1, r, x);
}

inline int query(int o1, int o2, int l, int r, int k) {
    if(l == r) return l;
    int mid = (l + r) >> 1, rsiz = tr[tr[o2].rch].val - tr[tr[o1].rch].val;
    if(k <= rsiz) return query(tr[o1].rch, tr[o2].rch, mid + 1, r, k);
    else return query(tr[o1].lch, tr[o2].lch, l, mid, k - rsiz);
}

int w[MAXN], anc[MAXN][20];
std::vector<int> gra[MAXN];

struct Edge {
    int u, v, w;
} edges[MAXM];

inline bool cmp(Edge a, Edge b) {
    return a.w < b.w;
}

inline void kruskal() {
    int cnt = 0;
    for(int i = 1; i <= m; i++) {
        int u = edges[i].u, v = edges[i].v, fu = find(u), fv = find(v);
        if(fu == fv) continue;
        w[++N] = edges[i].w;
        gra[N].push_back(fu); gra[N].push_back(fv);
        fa[fu] = fa[fv] = fa[N] = N;
        if(++cnt == n - 1) break;
    }
}

int vn[MAXN], dep[MAXN], dfl[MAXN], dfr[MAXN], clk;

inline void dfs(int u) {
    dfl[u] = clk;
    if(u <= n) vn[++clk] = u;
    for(int i = 1; (1 << i) <= dep[u]; i++) {
        anc[u][i] = anc[anc[u][i - 1]][i - 1];
    }
    for(int i = 0; i < gra[u].size(); i++) {
        int v = gra[u][i];
        if(v == anc[u][0]) continue;
        dep[v] = dep[u] + 1;
        anc[v][0] = u;
        dfs(v);
    }
    dfr[u] = clk;
}

inline int findrt(int u, int x) {
    for(int i = 19; i >= 0; i--) {
        if(anc[u][i] && w[anc[u][i]] <= x) u = anc[u][i];
    }
    return u;
}

std::vector<int> tmp;

int main() {
    n = readint(); m = readint(); q = readint(); N = n;
    for(int i = 1; i <= n; i++) {
        fa[i] = i; 
    }
    tmp.push_back(-1);
    for(int i = 1; i <= n; i++) {
        w[i] = readint();
        tmp.push_back(w[i]);
    }
    for(int i = 1; i <= m; i++) {
        edges[i].u = readint(); edges[i].v = readint(); edges[i].w = readint();
    }
    std::sort(edges + 1, edges + m + 1, cmp);
    kruskal();
    dfs(N);
    std::sort(tmp.begin(), tmp.end());
    tmp.erase(std::unique(tmp.begin(), tmp.end()), tmp.end());
    for(int i = 1; i <= n; i++) {
        w[i] = std::lower_bound(tmp.begin(), tmp.end(), w[i]) - tmp.begin();
    }
    for(int i = 1; i <= n; i++) {
        rt[i] = rt[i - 1];
        insert(rt[i], 1, n, w[vn[i]]);
    }
    int lastans = 0, v, x, k;
    while(q--) {
        v = readint() ^ lastans; x = readint() ^ lastans; k = readint() ^ lastans;
        v = findrt(v, x);
        if(tr[rt[dfr[v]]].val - tr[rt[dfl[v]]].val < k) puts("-1"), lastans = 0;
        else printf("%d\n", lastans = tmp[query(rt[dfl[v]], rt[dfr[v]], 1, n, k)]);
    }
    return 0;
}
[ONTAK2010]Peaks 题解

[ONTAK2010]Peaks 题解

题目地址:BZOJ:Problem 3545. — [ONTAK2010]Pe 

[BZOJ3439]Kpm的MC密码 题解

[BZOJ3439]Kpm的MC密码 题解

题目地址:BZOJ:Problem 3439. — Kpm的MC密码 题目描述 

[国家集训队]数颜色 题解

[国家集训队]数颜色 题解

题目地址:洛谷:【P1903】[国家集训队]数颜色 – 洛谷、BZOJ:Problem 2120. — 数颜色

题目描述

墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问。墨墨会向你发布如下指令:

  1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔。
  2. R P Col 把第P支画笔替换为颜色Col。

为了满足墨墨的要求,你知道你需要干什么了吗?

题意简述

给一个颜色数组,每个位置有一个颜色,两种操作:

  1. 改变某位置颜色
  2. 查询区间颜色数

输入输出格式

输入格式:
第1行两个整数N,M,分别代表初始画笔的数量以及墨墨会做的事情的个数。
第2行N个整数,分别代表初始画笔排中第i支画笔的颜色。
第3行到第2+M行,每行分别代表墨墨会做的一件事情,格式见题干部分。

输出格式:
对于每一个Query的询问,你需要在对应的行中给出一个数字,代表第L支画笔到第R支画笔中共有几种不同颜色的画笔。

输入输出样例

输入样例#1:

6 5
1 2 3 4 5 5
Q 1 4
Q 2 6
R 1 2
Q 1 4
Q 2 6

输出样例#1:

4
4
3
4

说明

对于100%的数据,N≤50000,M≤50000,所有的输入数据中出现的所有整数均大于等于1且不超过10^6。
本题可能轻微卡常数

题解

我们可以求出每个位置的pre值,表示该位置颜色在该位置之前的最后一次出现位置。如果该位置之前没有出现过这种颜色了,则规定pre值为0。这个问题就可以转化成一个区间内查询pre值小于区间左端点数量的问题,显然可以用树状数组套主席树这样的形式来维护。
至于修改,我们可以用set维护每个颜色的出现位置,这样就可以利用lower_bound找前驱后继,从而维护线段树中的信息。
总复杂度O(n \log^2 n),不过这种写法跑的特别慢,还好卡进去了。

代码

// Code by KSkun, 2018/5
#include <cstdio>
#include <cctype>
#include <cstring>

#include <algorithm>
#include <set>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) 
        ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    register char c = fgc();
    while(!isdigit(c)) {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(isdigit(c)) {
        res = (res << 1) + (res << 3) + c - '0';
        c = fgc();
    }
    return res * neg;
}

inline bool isop(char c) {
    return c == 'Q' || c == 'R';
}

inline char readop() {
    char c;
    while(!isop(c = fgc())) {}
    return c;
}

const int MAXN = 50005;

struct Node {
    int lch, rch, val;
} tr[MAXN * 200];
int rt[MAXN], tot;

int sta[MAXN], stop;

inline int newnode() {
    if(!stop) return ++tot;
    int p = sta[--stop];
    memset(tr + p, 0, sizeof(Node));
    return p;
}

inline void delnode(int p) {
    if(!p) return;
    sta[stop++] = p;
}

inline void insert(int &o, int l, int r, int x) {
    int p = newnode(); tr[p] = tr[o]; delnode(o); o = p;
    tr[o].val++;
    if(l == r) return;
    int mid = (l + r) >> 1;
    if(x <= mid) insert(tr[o].lch, l, mid, x);
    else insert(tr[o].rch, mid + 1, r, x);
}

inline void erase(int &o, int l, int r, int x) {
    int p = newnode(); tr[p] = tr[o]; delnode(o); o = p;
    tr[o].val--;
    if(l == r) return;
    int mid = (l + r) >> 1;
    if(x <= mid) erase(tr[o].lch, l, mid, x);
    else erase(tr[o].rch, mid + 1, r, x);
}

inline int query(int o, int l, int r, int x) {
    if(l == r) return 0;
    int mid = (l + r) >> 1;
    if(x <= mid) return query(tr[o].lch, l, mid, x);
    else return tr[tr[o].lch].val + query(tr[o].rch, mid + 1, r, x);
}

int n, m;

inline int lowbit(int x) {
    return x & -x;
}

inline void insert(int x, int v) {
    for(int i = x; i <= n; i += lowbit(i)) {
        insert(rt[i], 0, 1000000, v);
    }
}

inline void erase(int x, int v) {
    for(int i = x; i <= n; i += lowbit(i)) {
        erase(rt[i], 0, 1000000, v);
    }
}

inline int query(int x, int v) {
    int res = 0;
    for(int i = x; i; i -= lowbit(i)) {
        res += query(rt[i], 0, 1000000, v);
    }
    return res;
}

std::set<int> col[1000005];
int col2[MAXN];

char op; int x, y;

int main() {
    n = readint(); m = readint();
    for(int i = 1; i <= 1000000; i++) {
        col[i].insert(0);
    }
    for(int i = 1; i <= n; i++) {
        x = readint();
        col[x].insert(i); col2[i] = x;
        if(col[x].empty()) col[x].insert(0);
        std::set<int>::iterator it = col[x].lower_bound(i);
        insert(i, *--it);
    }
    while(m--) {
        op = readop(); x = readint(); y = readint();
        if(op == 'Q') {
            printf("%d\n", query(y, x) - query(x - 1, x));
        } else {
            std::set<int>::iterator it = col[col2[x]].lower_bound(x), 
                itp = --it, itn = ++++it; --it;
            erase(x, *itp); 
            if(itn != col[col2[x]].end()) { 
                erase(*itn, x); insert(*itn, *itp);
            } 
            col[col2[x]].erase(it); col2[x] = y;
            col[col2[x]].insert(x); it = col[col2[x]].lower_bound(x); 
            itp = --it; itn = ++++it; --it;
            insert(x, *itp); 
            if(itn != col[col2[x]].end()) {
                erase(*itn, *itp); insert(*itn, x);
            }
        }
    }
    return 0;
}
[TJOI2017]不勤劳的图书管理员 题解

[TJOI2017]不勤劳的图书管理员 题解

题目地址:洛谷:【P3759】[TJOI2017]不勤劳的图书管理员 – 洛谷 

[ZJOI2013]K大数查询 题解

[ZJOI2013]K大数查询 题解

题目地址:洛谷:【P3332】[ZJOI2013]K大数查询 – 洛谷、BZO 

[SCOI2016]美味 题解

[SCOI2016]美味 题解

题目地址:洛谷:【P3293】[SCOI2016]美味 – 洛谷、BZOJ:Problem 4571. — [Scoi2016]美味

题目描述

一家餐厅有 n 道菜,编号 1…n ,大家对第 i 道菜的评价值为 ai(1<=i<=n)。有 m 位顾客,第 i 位顾客的期望值为 bi,而他的偏好值为 xi 。因此,第 i 位顾客认为第 j 道菜的美味度为 bi XOR (aj+xi),XOR 表示异或运算。
第 i 位顾客希望从这些菜中挑出他认为最美味的菜,即美味值最大的菜,但由于价格等因素,他只能从第 li 道到第 ri 道中选择。请你帮助他们找出最美味的菜。

题意简述

给一个长为n的数列a,每次查询给b、x、l、r,查询使得b xor (ai + x)最大的a数列中[l, r]这些数字中的ai。

输入输出格式

输入格式:
第1行,两个整数,n,m,表示菜品数和顾客数。
第2行,n个整数,a1,a2,…,an,表示每道菜的评价值。
第3至m+2行,每行4个整数,b,x,l,r,表示该位顾客的期望值,偏好值,和可以选择菜品区间。

输出格式:
输出 m 行,每行 1 个整数,ymax ,表示该位顾客选择的最美味的菜的美味值。

输入输出样例

输入样例#1:

4 4
1 2 3 4
1 4 1 4
2 3 2 3
3 2 3 3
4 1 2 4

输出样例#1:

9 
7 
6 
7

说明

对于所有测试数据,1<=n<=2*10^5,0<=ai,bi,xi<10^5,1<=li<=ri<=n(1<=i<=m);1<=m<=10^5

题解

参考资料:[BZOJ4571][SCOI2016]美味 – 租酥雨 – 博客园
异或相关信息用Trie树方便,区间无修查询用主席树方便。这里二选一,我们选择主席树。
那么主席树应该怎么做呢?我们依然按位贪心,让bi尽量跟(aj + xi)每一位都不同,假设枚举到代表2^i的一位,且假设ans是之前已经确定的位加起来的总和,那么其实当该位为1的时候,枚举更低的位数构成的集合是一个长为2^i的区间 [ans, ans + 2^i - 1] ,我们只需要在主席树上查这个区间内有没有数字就好了。
总复杂度是O(n \log^2 n)

代码

// Code by KSkun, 2018/5
#include <cstdio>
#include <cctype>

#include <algorithm>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    register char c = fgc();
    while(!isdigit(c)) {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(isdigit(c)) {
        res = (res << 1) + (res << 3) + c - '0';
        c = fgc();
    }
    return res * neg;
}

const int MAXN = 200005;

struct Node {
    int lch, rch, val;
} tr[MAXN * 100];
int rt[MAXN], tot;

inline void insert(int &o, int l, int r, int x) {
    tr[++tot] = tr[o]; o = tot;
    tr[o].val++;
    if(l == r) return;
    int mid = (l + r) >> 1;
    if(x <= mid) insert(tr[o].lch, l, mid, x);
    else insert(tr[o].rch, mid + 1, r, x);
}

inline int query(int o1, int o2, int l, int r, int ll, int rr) {
    if(l >= ll && r <= rr) return tr[o2].val - tr[o1].val;
    int res = 0;
    int mid = (l + r) >> 1;
    if(ll <= mid) res += query(tr[o1].lch, tr[o2].lch, l, mid, ll, rr);
    if(rr > mid) res += query(tr[o1].rch, tr[o2].rch, mid + 1, r, ll, rr);
    return res;
}

int n, m, a[MAXN];

int main() {
    n = readint(); m = readint();
    for(int i = 1; i <= n; i++) {
        a[i] = readint(); 
        rt[i] = rt[i - 1];
        insert(rt[i], 0, 100000, a[i]);
    }
    for(int i = 1, b, x, l, r; i <= m; i++) {
        b = readint(); x = readint(); l = readint(); r = readint();
        int ans = 0;
        for(int i = 19; i >= 0; i--) {
            int ql, qr, now;
            if(b & (1 << i)) {
                ql = ans; qr = ans + (1 << i) - 1; now = 0;
            } else {
                ql = ans + (1 << i); qr = ans + (1 << (i + 1)) - 1; now = 1;
            }
            if(!query(rt[l - 1], rt[r], 0, 100000, 
                std::max(0, ql - x), std::min(qr - x, 100000))) now ^= 1;
            ans += now << i;
        }
        printf("%d\n", ans ^ b);
    }
    return 0;
}
[SDOI2013]森林 题解

[SDOI2013]森林 题解

题目地址:洛谷:【P3302】[SDOI2013]森林 – 洛谷、BZOJ:P