数学笔记:极限、导数、积分
极限(Limit) 概 …
May all the beauty be blessed.
题目地址:洛谷:【SP16549】QTREE6 – Query on a tree VI – 洛谷、SPOJ:SPOJ.com – Problem QTREE6
SPOJ QTREE系列:
You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are numbered from 1 to n. Each node has a color, white or black. All the nodes are black initially. We will ask you to perform some instructions of the following form:
给一棵树,最初点全是黑色的,操作:1.询问到u路径颜色相同的点有多少个2.改变颜色
输入格式:
The first line contains a number n that denotes the number of nodes in the tree (1 ≤ n ≤ 10^5). In each of the following n-1 lines, there will be two numbers (u, v) that describes an edge of the tree (1 ≤ u, v ≤ n). The next line contains a number m denoting number of operations we are going to process (1 ≤ m ≤ 10^5). Each of the following m lines describe an operation (t, u) as we mentioned above(0 ≤ t ≤ 1, 1 ≤ u ≤ n).
输出格式:
For each query operation, output the corresponding result.
输入样例#1:
5 1 2 1 3 1 4 1 5 3 0 1 1 1 0 1
输出样例#1:
5 1
输入样例#2:
7 1 2 1 3 2 4 2 5 3 6 3 7 4 0 1 1 1 0 2 0 3
输出样例#2:
7 3 3
参考资料:【Qtree】Query on a tree系列LCT解法 – CSDN博客
本题还是可以用边分……等等这题边分我做不动了,用的LCT。
我们考虑搞两棵LCT对应黑和白色的点构成的树。这样其实查询就变成了某一棵树上的子树大小查询。这个可以用子树信息LCT方便地维护。具体来说,就是统计一下跟当前点相连的轻边子树大小和Splay子树大小加起来。access的时候边合并Splay边更新轻边子树大小即可。
但是如果改变颜色的时候强行切边,有可能被菊花图卡掉。我们考虑把原树拉成一棵有根树,只切该点和父亲的边,这样,这棵LCT就满足所有儿子肯定同色,但是这个父亲可以跟儿子不同色这样的性质。我们在统计答案的时候找到子树根,然后看看子树根是否和儿子的颜色一致,不一致就取儿子的答案即可。
有一个小优化,可以DFS建树,把原树的边建成LCT上的轻边就好。
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <algorithm>
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 100005, INF = 1e9;
struct Edge {
int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], ecnt, fa[MAXN], col[MAXN];
inline void addedge(int u, int v, int w) {
gra[ecnt] = Edge {v, w, head[u]}; head[u] = ecnt++;
}
struct LCT {
struct LCTNode {
int ch[2], fa, siz, s;
bool rev;
} lct[MAXN];
inline bool isleft(int p) {
return lct[lct[p].fa].ch[0] == p;
}
inline bool isroot(int p) {
register int fa = lct[p].fa;
return lct[fa].ch[0] != p && lct[fa].ch[1] != p;
}
inline void update(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
lct[p].siz = lct[p].s + lct[ls].siz + lct[rs].siz + 1;
}
inline void reverse(int p) {
std::swap(lct[p].ch[0], lct[p].ch[1]);
lct[p].rev ^= 1;
}
inline void pushdown(int p) {
register int ls = lct[p].ch[0], rs = lct[p].ch[1];
if(lct[p].rev) {
if(ls) reverse(ls);
if(rs) reverse(rs);
lct[p].rev ^= 1;
}
}
int sta[MAXN], stop;
inline void pushto(int p) {
stop = 0;
while(!isroot(p)) {
sta[stop++] = p;
p = lct[p].fa;
}
pushdown(p);
while(stop) {
pushdown(sta[--stop]);
}
}
inline void rotate(int p) {
register bool t = !isleft(p); register int fa = lct[p].fa, ffa = lct[fa].fa;
lct[p].fa = ffa; if(!isroot(fa)) lct[ffa].ch[!isleft(fa)] = p;
lct[fa].ch[t] = lct[p].ch[!t]; lct[lct[fa].ch[t]].fa = fa;
lct[p].ch[!t] = fa; lct[fa].fa = p;
update(fa);
}
inline void splay(int p) {
pushto(p);
for(register int fa = lct[p].fa; !isroot(p); rotate(p), fa = lct[p].fa) {
if(!isroot(fa)) rotate(isleft(fa) == isleft(p) ? fa : p);
}
update(p);
}
inline void access(int p) {
for(register int q = 0; p; q = p, p = lct[p].fa) {
splay(p);
if(lct[p].ch[1]) lct[p].s += lct[lct[p].ch[1]].siz;
if(q) lct[p].s -= lct[q].siz;
lct[p].ch[1] = q;
update(p);
}
}
inline void makert(int p) {
access(p);
splay(p);
reverse(p);
}
inline int findrt(int p) {
access(p);
splay(p);
while(lct[p].ch[0]) p = lct[p].ch[0];
return p;
}
inline void link(int u) {
access(fa[u]);
splay(fa[u]);
splay(u);
lct[fa[u]].ch[1] = u;
lct[u].fa = fa[u];
update(fa[u]);
}
inline void cut(int u) {
access(u);
splay(u);
lct[u].ch[0] = lct[lct[u].ch[0]].fa = 0;
update(u);
}
inline int query(int u) {
int c = col[u];
u = findrt(u);
splay(u);
return col[u] == c ? lct[u].siz : lct[lct[u].ch[1]].siz;
}
} L[2];
inline void dfs(int u, int f) {
for(int i = head[u]; ~i; i = gra[i].nxt) {
int v = gra[i].to;
if(v == f) continue;
fa[v] = L[0].lct[v].fa = u;
dfs(v, u);
L[0].lct[u].s += L[0].lct[v].siz;
}
L[0].update(u);
}
int n, q, ut, vt, op;
int main() {
memset(head, -1, sizeof(head));
n = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint();
addedge(ut, vt, 1);
addedge(vt, ut, 1);
}
dfs(1, 0);
q = readint();
while(q--) {
op = readint(); ut = readint();
if(!op) {
printf("%d\n", L[col[ut]].query(ut));
} else {
if(fa[ut]) {
L[col[ut]].cut(ut);
L[col[ut] ^ 1].link(ut);
}
col[ut] ^= 1;
}
}
return 0;
}
题目地址:洛谷:【SP913】QTREE2 – Query on a tree II – 洛谷、SPOJ:SPOJ.com – Problem QTREE2
SPOJ QTREE系列:
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3…N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
给一棵带边权的树,操作1.询问两点路径长2.求两点有向路径上第k点。
输入格式:
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
There is one blank line between successive tests.
输出格式:
For each “DIST” or “KTH” operation, write one integer representing its result.
Print one blank line after each test.
输入样例#1:
1 6 1 2 1 2 4 1 2 5 2 1 3 1 3 6 2 DIST 4 6 KTH 4 6 4 DONE
输出样例#1:
5 3
求和同QTREE:[SPOJ-QTREE]Query on a tree 题解 | KSkun’s Blog。查k点可以考虑算一下LCA到两个儿子的距离,看看这个点在哪条链上,然后再换算成底端往上第几个点,沿重链上跳,利用DFS序算出来即可。
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int readint() {
register int res = 0, neg = 1;
register char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
inline bool isop(char c) {
return c == 'I' || c == 'H' || c == 'O';
}
inline char readop() {
register char c;
while(!isop(c = fgc()));
return c;
}
const int MAXN = 10005;
struct Edge {
int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], tot;
int T, n, m, ut, vt, wt, kt;
char op;
int w[MAXN], fa[MAXN], siz[MAXN], son[MAXN], dfn[MAXN], ptn[MAXN], top[MAXN], dep[MAXN], cnt;
inline void dfs1(int u) {
siz[u] = 1;
son[u] = 0;
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
w[v] = gra[i].w;
dfs1(v);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void dfs2(int u, int tp) {
top[u] = tp;
dfn[u] = ++cnt;
ptn[dfn[u]] = u;
if(son[u]) dfs2(son[u], tp);
for(register int i = head[u]; i; i = gra[i].nxt) {
register int v = gra[i].to;
if(v == son[u] || v == fa[u]) continue;
dfs2(v, v);
}
}
LL sgt[MAXN << 2];
inline void build(int o, int l, int r) {
if(l == r) {
sgt[o] = w[ptn[l]];
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
build(lch, l, mid);
build(rch, mid + 1, r);
sgt[o] = sgt[lch] + sgt[rch];
}
inline void modify(int o, int l, int r, int x, int v) {
if(l == r) {
sgt[o] = v;
return;
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
if(x <= mid) modify(lch, l, mid, x, v);
else modify(rch, mid + 1, r, x, v);
sgt[o] = sgt[lch] + sgt[rch];
}
inline LL query(int o, int l, int r, int ll, int rr) {
if(l >= ll && r <= rr) {
return sgt[o];
}
register int mid = (l + r) >> 1, lch = o << 1, rch = (o << 1) | 1;
register LL res = 0;
if(ll <= mid) res += query(lch, l, mid, ll, rr);
if(rr > mid) res += query(rch, mid + 1, r, ll, rr);
return res;
}
inline LL querysum(int u, int v) {
int tu = top[u], tv = top[v];
register LL res = 0;
while(tu != tv) {
if(dep[tu] > dep[tv]) {
std::swap(u, v);
std::swap(tu, tv);
}
res += query(1, 1, n, dfn[tv], dfn[v]);
v = fa[tv];
tv = top[v];
}
if(dep[u] > dep[v]) std::swap(u, v);
if(u != v) res += query(1, 1, n, dfn[u] + 1, dfn[v]);
return res;
}
inline int querylca(int u, int v) {
int tu = top[u], tv = top[v];
while(tu != tv) {
if(dep[tu] > dep[tv]) {
std::swap(u, v);
std::swap(tu, tv);
}
v = fa[tv];
tv = top[v];
}
if(dep[u] > dep[v]) std::swap(u, v);
return u;
}
inline int querykth(int u, int v, int k) {
int lca = querylca(u, v), tu = top[u], tv = top[v];
if(dep[u] - dep[lca] + 1 >= k) {
while(dep[tu] > dep[lca]) {
if(dep[u] - dep[tu] + 1 >= k) break;
k -= dep[u] - dep[tu] + 1;
u = fa[tu];
tu = top[u];
}
return ptn[dfn[u] - k + 1];
} else {
k -= dep[u] - dep[lca] + 1;
k = dep[v] - dep[lca] - k + 1;
while(dep[tv] > dep[lca]) {
if(dep[v] - dep[tv] + 1 >= k) break;
k -= dep[v] - dep[tv] + 1;
v = fa[tv];
tv = top[v];
}
return ptn[dfn[v] - k + 1];
}
}
inline void addedge(int u, int v, int w) {
gra[++tot] = Edge {v, w, head[u]};
head[u] = tot;
}
int main() {
T = readint();
while(T--) {
tot = cnt = 0;
memset(head, 0, sizeof(head));
n = readint();
for(int i = 1; i < n; i++) {
ut = readint(); vt = readint(); wt = readint();
addedge(ut, vt, wt);
addedge(vt, ut, wt);
}
dfs1(1);
dfs2(1, 1);
build(1, 1, n);
for(;;) {
op = readop();
if(op == 'O') break;
ut = readint();
vt = readint();
if(op == 'I') {
printf("%lld\n", querysum(ut, vt));
} else {
kt = readint();
printf("%d\n", querykth(ut, vt, kt));
}
}
printf("\n");
}
return 0;
}