[HDU5385]The path 题解
题目地址:HDUOJ:Problem – 5385 题目描述 You have …
May all the beauty be blessed.
题目地址:HDUOJ:Problem – 4903
There is an old country and the king fell in love with a devil. The devil always ask the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.
Something bad actually happen. The devil makes this kingdom’s people infected by a disease called lolicon. Lolicon will take away people’s life in silence.
Although z*p is died, his friend, y*wan is not a lolicon. Y*wan is the only one in the country who is immune of lolicon, because he like the adult one so much.
As this country is going to hell, y*wan want to save this country from lolicon, so he starts his journey.
You heard about it and want to help y*wan, but y*wan questioned your IQ, and give you a question, so you should solve it to prove your IQ is high enough.
The problem is about counting. How many undirected graphs satisfied the following constraints?
Can you solve it?
output the answer modulo 10^9+7
有一张n个点的无向完全图,第i个点的编号是i,每条边的边权在1到L之间的正整数,问存在多少个图使得1到n的最短路是k。
输入格式:
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains 3 integers n,k,L.
T<=5 n,k<=12,L<=10^9.
输出格式:
For each test case, output the answer in one line.
输入样例#1:
2 3 3 3 4 4 4
输出样例#1:
8 668
首先是方案数,我们就要找方案。考虑如果暴力地解决应该如何,我们可以首先把点1到每个点的最短路长度给枚举出来,然后构造这个图。但是仔细地分析一下,我们似乎不关心点的编号,只关心点的数量。那么这就好办了,我们只需要枚举1到该点最短路长度为定值的点有多少个就好了。
下面的叙述中,用dis代替某点最短路长度。
但是怎么统计方案数呢?考虑当前枚举到dis为x的点有i个的状况,枚举最短路长度1~x-1的方案数早已算出为res,且前面已经枚举过的点数和为tot,cnt数组表示dis为某值的点有多少个。
首先从剩下的点里面把i个点选出来,乘C_{n-tot-1}^i;
这些点之间的边是无所谓的,所以每条边随便给个长度就行,乘L^{C_i^2};
dis更小的点向这些点连边,设当前枚举到了之前的dis为x'的情况,这些边要满足x' + w \geq x(j是dis更小的点,i是当前dis的点,w是这条边的边权),每条边的边权有L - (x - x') + 1种可以选择,但是如果全都选择了比x - x'大的边权,最短路长度就无法满足,因此有一部分方案不能满足,要减去,所以最后的方案数是 (L - (x - x') + 1)^{cnt_{x'}} - (L - (x - x'))^{cnt_{x'}} ;
把上面这一大堆乘进答案里就好啦。
到达枚举终点时tot还有可能比n小,即有点没有算过。这些点内部的边肯定是任意怎么样都行,但是要保证它们的dis比k大,这样的话,上面的“一部分方案不能满足”部分就不存在了。
注意这里计算的数据都挺大的,及时取模,小心溢出。
// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MO = 1e9 + 7;
LL C[20][20];
inline void calc() {
for(int i = 0; i <= 12; i++) {
C[i][0] = 1;
for(int j = 1; j <= i; j++) {
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MO;
}
}
}
inline LL fpow(LL x, LL k) {
LL t = 1;
while(k) {
if(k & 1) t = (t * x) % MO;
x = (x * x) % MO;
k >>= 1;
}
return t;
}
int T, n, k, l, cnt[20];
LL ans;
inline LL cal(int x) {
if(!cnt[x]) return 1;
LL t1 = 1, t2 = 1;
for(int i = 0; i < x; i++) {
if(!cnt[i]) continue;
if(x - i > l) return 0;
t1 = t1 * fpow(l - (x - i) + 1, cnt[i]) % MO;
t2 = t2 * fpow(l - (x - i), cnt[i]) % MO;
}
if(x == k + 1) return fpow(t1, cnt[x]);
t1 -= t2; if(t1 < 0) t1 += MO;
t1 = fpow(t1, cnt[x]);
return t1;
}
inline void dfs(int x, LL res, int tot) {
if(x == k) {
for(int i = 1; i + tot <= n; i++) {
LL nres = res * C[n - tot - 1][i - 1] % MO * fpow(l, C[i][2]) % MO * fpow(l, C[n - tot - i][2]) % MO;
cnt[k] = i; cnt[k + 1] = n - tot - i;
nres = nres * cal(k) % MO * cal(k + 1) % MO;
ans = (ans + nres) % MO;
}
return;
}
for(int i = 0; i + tot < n; i++) {
cnt[x] = i;
LL nres = res * fpow(l, C[i][2]) % MO * C[n - tot - 1][i] % MO * cal(x) % MO;
dfs(x + 1, nres, tot + i);
}
}
int main() {
calc();
T = readint();
while(T--) {
n = readint(); k = readint(); l = readint();
memset(cnt, 0, sizeof(cnt));
cnt[0] = 1;
ans = 0;
dfs(1, 1, 1);
printf("%lld\n", ans);
}
return 0;
}
题目地址:Codeforces:Problem – 295B – Codeforces、洛谷:【CF295B】Greg and Graph – 洛谷
Greg has a weighed directed graph, consisting of n vertices. In this graph any pair of distinct vertices has an edge between them in both directions. Greg loves playing with the graph and now he has invented a new game:
Help Greg, print the value of the required sum before each step.
给一个完全图的邻接矩阵,按顺序删点,求每一次删点前剩下的点两两最短路长度的和。
输入格式:
The first line contains integer n (1 ≤ n ≤ 500) — the number of vertices in the graph.
Next n lines contain n integers each — the graph adjacency matrix: the j-th number in the i-th line aij (1 ≤ aij ≤ 105, aii = 0) represents the weight of the edge that goes from vertex i to vertex j.
The next line contains n distinct integers: x1, x2, …, xn (1 ≤ xi ≤ n) — the vertices that Greg deletes.
输出格式:
Print n integers — the i-th number equals the required sum before the i-th step.
Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.
输入样例#1:
1 0 1
输出样例#1:
0
输入样例#2:
2 0 5 4 0 1 2
输出样例#2:
9 0
输入样例#3:
4 0 3 1 1 6 0 400 1 2 4 0 1 1 1 1 0 4 1 2 3
输出样例#3:
17 23 404 0
n的范围很小,用O(n^2)的枚举求和是可行的,但是删点这个就不怎么好办了。
正难则反,如果把删点改成加点是否可以呢?
多源最短路让我们想到了Floyd,其实Floyd的实质是一个DP,由于压过维,所以有点看不出,实际上这个式子可以写成这样
dp[k][i][j]= \min (dp[k-1][i][j], dp[k-1][i][k] + dp[k-1][k][j])
如果在这个意义下,我们发现第一维维k的时候指的是只有1~k的图中的最短路。我们考虑把给出的排列反着来跑,计算出x[k]~x[n]的图的最短路,再把这些点的最短路每个算一遍加起来,加进答案序列。
// Code by KSkun, 2018/3
#include <cstdio>
#include <algorithm>
typedef long long LL;
inline char fgc() {
static char buf[100000], *p1 = buf, *p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline LL readint() {
register LL res = 0, neg = 1;
char c = fgc();
while(c < '0' || c > '9') {
if(c == '-') neg = -1;
c = fgc();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = fgc();
}
return res * neg;
}
const int MAXN = 505;
int n, dis[MAXN][MAXN], x[MAXN];
LL ans[MAXN];
int main() {
n = readint();
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
dis[i][j] = readint();
}
}
for(int i = 1; i <= n; i++) {
x[i] = readint();
}
for(int k = n; k >= 1; k--) {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
dis[i][j] = std::min(dis[i][j], dis[i][x[k]] + dis[x[k]][j]);
}
}
for(int i = n; i >= k; i--) {
for(int j = n; j >= k; j--) {
ans[k] += dis[x[i]][x[j]];
}
}
}
for(int i = 1; i <= n; i++) {
printf("%I64d ", ans[i]);
}
return 0;
}