标签: 模拟

[工程师死绝的世界D5004]錆びついた電波塔 翻译及题解

[工程师死绝的世界D5004]錆びついた電波塔 翻译及题解

生锈了的无线电发射塔 Translation by KSkun 原题:問題「錆びついた電波 

[工程师死绝的世界D4003]アンドロイドの生産工場 翻译及题解

[工程师死绝的世界D4003]アンドロイドの生産工場 翻译及题解

机器人生产工厂 Translation by KSkun 原题:問題「アンドロイドの生産工 

[工程师死绝的世界D4002]荒れ果てたオフィス 翻译及题解

[工程师死绝的世界D4002]荒れ果てたオフィス 翻译及题解

荒废的办公室

Translation by KSkun

原题:問題「荒れ果てたオフィス」 | エンジニアが死滅シタ世界 〜アンドロイドとふたりぼっちで生きろ〜

问题描述

你现在在整理乱七八糟的文件。
文件的重要性可以分为1、2和3三类,数字越大文件就越重要。

现在你知道了n份文件的标题字符串S_i和重要度e_i。
请按输入顺序输出重要度为3的文件名。

输入格式

n 
S_1 e_1 
... 
S_n e_n
  • 第一行包含一个数字n,表示文件的数量。
  • 第2行到2+n行每行包含文件标题的字符串S_i和重要度e_i。
  • 在输入的最后,包含一个换行符。

输出格式

请按输入顺序输出重要度为3的文件名。

条件

  • 1 ≦ n ≦ 100
  • 1 ≦ 字符串S_i的长度 ≦ 100
  • S_i是只由半角英文字符构成的字符串
  • e_i的值是整数1、2和3中的一个
  • 输入保证必存在e_i为3的文件

输入输出样例

输入输出样例1

输入:

5 
paiza 1 
coding 3 
answer 3 
input 2 
aaaaa 1

输出:

coding 
answer

输入输出样例2

输入:

1 
Paiza 3

输出:

Paiza

题解

// Code by KSkun, 2019/1
#include <cstdio>
#include <cctype>

#include <algorithm>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2)
        ? EOF : *p1++;
}

inline LL readint() {
    LL res = 0, neg = 1; char c = fgc();
    for(; !isdigit(c); c = fgc()) if(c == '-') neg = -1;
    for(; isdigit(c); c = fgc()) res = res * 10 + c - '0';
    return res * neg;
}

inline char readsingle() {
    char c;
    while(!isgraph(c = fgc())) {}
    return c;
}

char S[105];
int n, e;

int main() {
    scanf("%d", &n);
    while(n--) {
        scanf("%s%d", S, &e);
        if(e == 3) {
            printf("%s\n", S);
        }
    }
    return 0;
}
[工程师死绝的世界D4001]荒れ果てた警察署 翻译及题解

[工程师死绝的世界D4001]荒れ果てた警察署 翻译及题解

残破不堪的警察局 Translation by KSkun 原题:問題「荒れ果てた警察署」 

[JSOI2007]麻将 题解

[JSOI2007]麻将 题解

题目地址:洛谷:【P4050】[JSOI2007]麻将 – 洛谷、BZOJ:P 

郧阳中学5月月赛(高一组) 题解

郧阳中学5月月赛(高一组) 题解

A ⑨的完美绘画教室

题意简述

给一个CMY?序列,要求找到是否存在两种或以上填空方法使得这个字符串满足相邻两个字符不同的要求。

题解思路

其实最好写的做法应该是DFS试图寻找两个方案,找到两个就直接exit。不过我这场的时候头铁写了各种if。
既然写了if的方法就来说说思路吧。我们观察连续?的各种情况:

  1. C?C,显然这里有两种填法,出现这种情况就可以Yes了
  2. C?M,只能填一个,跳过
  3. C??C,有至少两种填法
  4. C??M,有至少两种填法
  5. C???C,有至少两种填法
  6. C???M,填法就比较多了,至少有两种
  7. ?更多的情况显然方案数更多

那么可行的情况是:

  1. 连续的?不少于2个
  2. 只有一个?且左右两边字符相同

接着还有绝对不合法的情况:

  1. 两个相邻的字符不是?且相同

判完就能AC了。头还是不够硬,fst了。

代码

// Code by KSkun
#include <cstdio>

int n;
char str[105];

int main() {
    scanf("%d%s", &n, str + 1);
    str[0] = '?';
    str[n + 1] = '?';
    bool success = false;
    for(int i = 1; i <= n + 1; i++) {
        if(str[i] == '?') {
            if(str[i - 1] == '?' || str[i + 1] == '?' || 
                (str[i - 1] != '?' && str[i + 1] != '?' && str[i - 1] == str[i + 1])) {
                success = true;
            }
        } else {
            if(str[i - 1] != '?' && str[i] == str[i - 1]) {
                success = false;
                break; 
            }
        }
    }
    if(success) printf("Yes"); else printf("No");
    return 0;
}

B 东舰共荣和平会议

题意简述

a一类,b一类,c可以转变为a或b类,想让相同数量的a类b类混一起,求最大数量。

题解思路

考虑贪心。
如果a+c < b或者b+c < a答案就是2倍的a、b中较小值加上c。
否则我们把一部分c转换成ab中较少的那一类使得a=b,再平分剩下的c。

代码

// Code by KSkun, 2018/3
#include <cstdio>

#include <algorithm>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    char c = fgc();
    while(c < '0' || c > '9') {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = fgc();
    }
    return res * neg;
}

int l, r, a;

int main() {
    l = readint();
    r = readint();
    a = readint();
    if(a >= std::abs(r - l)) {
        a -= std::abs(r - l);
        printf("%d", (std::max(l, r) + a / 2) * 2);
    } else {
        printf("%d", (std::min(l, r) + a) * 2);
    }
    return 0;
}

C 请当心车门与站台之间的隙间

题意简述

琪露诺(就是那个声称幻想乡没有巴士的小妖精)被幻想乡公交公司聘用为调度员,她现在正在管理雾之湖车站的进出站。具体而言,她现在拥有一份这个车站的时刻表,有若干班车按照时刻表的计划进站。每一班车进站需要 1 分钟时间。
不妙的是,有一班紧急班车需要临时进站,她现在想要将它的进站时间安排在某两班车之间的空隙中。这班车的进站也只需要 1 分钟,但是为了安全保证,它进站之前之后 s 分钟内不得有其他班车正在进站。
由于班车很紧急,琪露诺需要找到最早可以插入这班车的时间。不过由于她又去冻青蛙+1s了,所以你要来帮她解决这个问题。

题解思路

就是直接模拟一遍嘛。
注意特判一下是否能放在开头、结尾就行了。

代码

// Code by KSkun, 2018/4
#include <cstdio>
#include <cctype>

#include <algorithm>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    register char c = fgc();
    while(!isdigit(c)) {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(isdigit(c)) {
        res = (res << 1) + (res << 3) + c - '0';
        c = fgc();
    }
    return res * neg;
}

int n, s, h[105], m[105];

int main() {
    n = readint(); s = readint();
    for(int i = 1; i <= n; i++) {
        h[i] = readint(); m[i] = readint();
    }
    if(h[1] * 60 + m[1] >= s + 1) {
        printf("0 0");
        return 0;
    }
    for(int i = 2; i <= n; i++) {
        int del = (h[i] - h[i - 1] - 1) * 60 + m[i] + 60 - m[i - 1] - 1;
        if(del >= s * 2 + 1) {
            m[i - 1] += s + 1;
            h[i - 1] += m[i - 1] / 60;
            m[i - 1] %= 60;
            printf("%d %d", h[i - 1], m[i - 1]);
            return 0;
        }
    }
    m[n] += s + 1;
    h[n] += m[n] / 60;
    m[n] %= 60;
    printf("%d %d", h[n], m[n]);
    return 0;
}

D 出题人的自我修养

题意简述

有一个只由0和1构成的字符串。我们规定,题目中所有合法的01串都满足以下性质:

  1. 只由0和1构成。
  2. 没有多余的前导0。

你可以对一个01串进行下列操作:

  1. 交换任意两个相邻字符。如101交换后两个字符后变为110。
  2. 将两个相邻的1替换成一个1。如110替换后变为10。

我们规定记号 val(s) 是二进制表示为01串 s 的那个数字。而称01串 a 小于01串 b 当且仅当 val(a) < val(b) 。

现在,你要找到一个最小的合法01串且这个01串可以由给定的01串 s 经过上述操作变化而来。

题解思路

实质你可以把一堆1全部转到前面然后消成1个1,因此答案就是1后面跟原来字符串里有的0。
注意如果整个字符串没有1,只需要输出0。

代码

// Code by KSkun, 2018/4
#include <cstdio>
#include <cctype>

typedef long long LL;

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline LL readint() {
    register LL res = 0, neg = 1;
    register char c = fgc();
    while(!isdigit(c)) {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(isdigit(c)) {
        res = (res << 1) + (res << 3) + c - '0';
        c = fgc();
    }
    return res * neg;
}

inline bool is01(char c) {
    return c == '0' || c == '1';
}

inline int read01() {
    char c;
    while(!is01(c = fgc()));
    return c - '0';
}

int n, c0, c1;

int main() {
    n = readint();
    for(int i = 1; i <= n; i++) {
        if(read01() == 0) c0++; else c1++;
    }
    if(!c1) {
        puts("0");
        return 0;
    }
    putchar('1');
    while(c0--) {
        putchar('0');
    }
    return 0;
}
[洛谷1580]yyy loves Easter_Egg I 题解

[洛谷1580]yyy loves Easter_Egg I 题解

题目地址:洛谷:【P1580】yyy loves Easter_Egg I – 

[SCOI2005]扫雷 题解

[SCOI2005]扫雷 题解

题目地址:洛谷:【P2327】[SCOI2005]扫雷 – 洛谷、BZOJ:P 

郧阳中学12/3周考题解

郧阳中学12/3周考题解

这周周考被基础算法虐翻了。%%%wxgdalao

命题人

wxg

题目列表

赛题 #A: zcr搞破坏 | 贪心
赛题 #B: zcr爱吃鸡2 | 离散化,二分答案,枚举,模拟
赛题 #C: zcr解谜题 | DP,最大子矩阵

zcr搞破坏

回到列表

一句话题意

给出一个无向图,要求删掉图上的所有点。每一次删点的消耗是所有跟该点相连的所有未删除点的点权和。分别求最大权删法和次小权删法的消耗和。保证数据中无自环,且两点间最多有1条连边。

解法

100% 1 \leq n,\ m,\ a_i \leq 10^6

本题考察贪心思想。
试想对于边 (u, v) ,其中必然会有一个点会被加入最终答案。得到此性质后,考虑如何求最大权和最小权。对于求最大权的情况,我们需要把边中权值较大的点加入答案,而删除较小的点。
正确性的证明方面,我们应该考虑上面这个操作的完整形式。对于求最大权的情况,完整的操作应当是先对边以其中的较大权点的权值进行降序排序,再以该顺序删除每边中较大权的点。在这个过程中,大权点一定比小权点先被删除,因此能够保证求出答案的最优性。由于该操作要对每一条边进行,排序自然就没有必要,因此才有了上面的那种操作。
最小权的操作类比于最大权的操作。
关于求次小权,次小权一定存在于将最优删点顺序中相邻两点调换后的顺序的答案中,因此我们枚举调换的是哪两个点。考虑调换后对答案产生的影响,由于相邻两点的调换不会影响这两点之前、之后序列的单调性,因此只有两点间的连边会对答案造成影响。由于最多只可能有一条这样的边,我们检查是否有边,若无边则次小权等于最小权(无边对答案无影响),否则维护两点权值差的绝对值(即对答案产生的影响),次小权即是最小权加上前面影响的最小值。
总复杂度 O(nlogn)

代码

// Code by KSkun, 2017/12
#include <cstdio>
#include <vector>
#include <algorithm>

struct io {
    char buf[1 << 26], *s;

    io() {
        fread(s = buf, 1, 1 << 26, stdin);
    }

    inline int read() {
        register int res = 0;
        while(*s < '0' || *s > '9') s++;
        while(*s >= '0' && *s <= '9') res = res * 10 + *s++ - '0';
        return res;
    }
} ip;

#define read ip.read

int n, m, kase, a[1000005], order[1000005], ut, vt;
long long resmax = 0, resmin = 0;
std::vector<int> vec[1000005];

inline bool cmp(int u, int v) {
    return a[u] < a[v];
}

int main() {
    n = read();
    m = read();
    kase = read();
    for(int i = 1; i <= n; i++) {
        a[i] = read();
        if(kase == 2) order[i] = i;
    }
    for(int i = 0; i < m; i++) {
        ut = read();
        vt = read();
        resmax += std::max(a[ut], a[vt]);
        if(kase == 2) {
            vec[ut].push_back(vt);
            vec[vt].push_back(ut);
            resmin += std::min(a[ut], a[vt]);
        }
    }
    printf("%lld ", resmax);
    if(kase == 1) {
        return 0;
    }
    std::sort(order + 1, order + n + 1, cmp);
    long long minn = 1e15;
    for(int i = 1; i < n; i++) {
        int u = order[i];
        bool success = false;
        for(int j = 0; j < vec[u].size(); j++) {
            int v = vec[u][j];
            if(v == order[i + 1]) {
                success = true;
                break;
            } 
        }
        minn = std::min(minn, 0ll + a[order[i + 1]] - a[u]);
        if(!success) {
            minn = 0;
            break;
        }
    }
    printf("%lld", resmin + minn);
    return 0;
}

zcr爱吃鸡2

回到列表

一句话题意

给出一些点,求能够包含其中C个点的最小正方形边长。

解法

100% n \leq 1000

本题考察二分答案和枚举。
代码中,check()函数用于枚举行,check1()函数用于枚举列。
二分答案确定正方形边长的取值。然后枚举可能的正方形并且检验即可。
总复杂度O(n^2logn)

代码

// Code by KSkun, 2017/12
#include <cstdio>
#include <vector>
#include <algorithm>
#include <utility>
#include <vector>

struct io {
    char buf[1 << 26], *s;

    io() {
        fread(s = buf, 1, 1 << 26, stdin);
    }

    inline int read() {
        register int res = 0;
        while(*s < '0' || *s > '9') s++;
        while(*s >= '0' && *s <= '9') res = res * 10 + *s++ - '0';
        return res;
    }
} ip;

#define read ip.read

std::vector<std::pair<int, int> > points; 
std::vector<int> tmp;
int c, n, xt, yt;

inline bool check1(int l, int r, int p) {
    // 枚举列
    if(r - l + 1 < c) return false;
    tmp.clear();
    for(int i = l; i <= r; i++) {
        tmp.push_back(points[i].second);
    }
    sort(tmp.begin(), tmp.end());
    for(int i = c - 1; i < tmp.size(); i++) {
        if(tmp[i] - tmp[i - c + 1] <= p) return true;
    }
    return false;
} 

inline bool check(int p) {
    // 枚举行
    int lastp = 0;
    for(int i = 0; i < n; i++) {
        if(points[i].first - points[lastp].first > p) {
            //printf("i %d lastp %d\n", points[i].first, points[lastp].first);
            if(check1(lastp, i - 1, p)) return true;
            while(points[i].first - points[lastp].first > p) lastp++;
        }
    } 
    if(check1(lastp, n - 1, p)) return true;
    return false;
}

int main() {
    c = read();
    n = read();
    for(int i = 0; i < n; i++) {
        xt = read();
        yt = read();
        points.push_back(std::make_pair(xt, yt));
    }
    std::sort(points.begin(), points.end());
    int l = 0, r = 10005, mid;
    while(r - l > 1) {
        mid = (l + r) >> 1;
        //printf("mid %d\n", mid);
        if(check(mid)) r = mid;
        else l = mid;
    }
    printf("%d", r + 1);
    return 0;
}

感想

本题中有一些暴力技巧降低复杂度,可以学习。

zcr解谜题

回到列表

一句话题意

给出一个矩阵,求最大子矩形。其中,你有一次机会把任何数字改成给定值。

解法

80% n, m \leq 100

显然我们需要更改的只有可能是选中的矩形的最小值。
最小子矩形DP+预处理最小值。
总复杂度O(n^4)

100% n, m \leq 300

考虑使用DP来递推“是否修改数字”这一状态。
dp[k][0/1]表示第k行未修改过(0)/修改过(1)数字的结果,状态转移方程如下
\begin{array}{l} dp[k][0] = max\{dp[k-1][0], 0\} + sum[k] \\ dp[k][1] = max\{dp[k-1][1], dp[k-1][0] + P - min[k]\} + sum[k] \end{array}
其中sum[k]代表当前选中的左右边界中第k行的和,min[k]代表边界中第k行的最小值。
答案在每个dp状态中,所以完成一次转移就要更新答案。
我们枚举矩形的左右边界,每一次枚举进行DP,即可得到总答案。
其实上述DP方法应该说是最大子矩形DP的一种变形,基本思路是一致的。

标程 by wxg

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m,p,a[305][305],sum[305],qz[305][305],minn[305],dp[305][2],ans;
int main()
{
    cin>>n>>m>>p;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    cin>>a[i][j],qz[i][j]=qz[i][j-1]+a[i][j];
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
        minn[j]=a[j][i];
        for(int j=i;j<=m;j++)
        {
            for(int k=1;k<=n;k++)
            {
                minn[k]=min(minn[k],a[k][j]);
                sum[k]=qz[k][j]-qz[k][i-1];
            }
            dp[0][0]=0,dp[0][1]=-0x3f3f3f3f;
            for(int k=1;k<=n;k++)
            {
                dp[k][0]=max(dp[k-1][0],0)+sum[k];
                dp[k][1]=max(dp[k-1][1]+sum[k],max(dp[k-1][0],0)+sum[k]-minn[k]+p);
            }
            for(int k=1;k<n;k++) ans=max(ans,max(dp[k][0],dp[k][1]));
            if(i==1&&j==m)
            {
                ans=max(ans,dp[n][1]);
                int cnt=0;
                for(int k=n;k>1;k--)
                cnt+=sum[k],ans=max(ans,cnt);
            }
            else ans=max(ans,max(dp[n][0],dp[n][1]));
        }
    }
    cout<<ans<<endl;
    return 0;
}

感想

本题是最大子矩形的一个变种,简单DP,有一些思维量。写的时候才发现我连最大子矩形都忘完了,药丸。

NOIP2017提高组题解&总结

NOIP2017提高组题解&总结

本篇题解借鉴和参考了洛谷题解区的同学所写的题解以及部分博文,由于未能记录全面,并没能将这些