月度归档: 2018 年 3 月

数学笔记:泰勒公式、泰勒级数、泰勒展开

数学笔记:泰勒公式、泰勒级数、泰勒展开

别看这个标题上有三个名词,其实他们说的都是一个东西,就是下面的这个玩意:

泰勒定理(Taylor’s theorem)

设n是一个正整数。如果定义在一个包含a的区间上的函数f在a点处n+1次可导,那么对于这个区间上的任意x,都有:
f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)
其中的多项式称为函数在a处的泰勒展开式,剩余的R_n(x)是泰勒公式的余项,是 (x-a)^n 的高阶无穷小。
对于R_n(x)这个东西,你可以理解为误差。

拉格朗日余项

R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-\xi)^{n+1}

泰勒公式(Taylor’s Formula)

泰勒公式是一个用函数在某点的信息来描述其在该点附近取值的公式。也就是说,是一个这个函数的多项式拟合式。函数的泰勒展开式由上面提到的泰勒定理而来,例如我们可以将e^xx=0附近展开如下
e^x \approx 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}
很多时候我们可以用这个方法求一些函数的近似值,例如e^x, \cos, \sin, \ln等。

常见的展开

\begin{aligned} \sin x &= \frac{-x}{1} + \frac{x^3}{6} + \cdots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \cdots \\ \cos x &= 1 + \frac{-x^2}{2} + \cdots + \frac{(-1)^n x^{2n}}{(2n)!} + \cdots \\ (1+x)^m &= \sum_0^{+\infty} \frac{m(m-1)\cdots(m-n+1)}{n!}x^n \\ \ln(1+x) &= \frac{x}{1} + \frac{-x^2}{2} + \cdots + \frac{(-1)^nx^{n+1}}{n+1} + \cdots \end{aligned}
我们说的e^{ix} = \cos x + i \sin x就是由上述结论定义而来的。其证明参见:欧拉公式 – 维基百科,自由的百科全书

参考资料

[NOI2012]骑行川藏 题解

[NOI2012]骑行川藏 题解

题目地址:洛谷:【P2179】[NOI2012]骑行川藏 – 洛谷、BZOJ:Problem 2876. — [Noi2012]骑行川藏

题目描述

蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨。川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地、同时合理分配好自己的体力是一件非常重要的事情。
由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响)。某一天他打算骑N段路,每一段内的路况可视为相同:对于第i段路,我们给出有关这段路况的3个参数 si , ki , vi’ ,其中 si 表示这段路的长度, ki 表示这段路的风阻系数, vi’ 表示这段路上的风速(表示在这段路上他遇到了顺风,反之则意味着他将受逆风影响)。若某一时刻在这段路上骑车速度为v,则他受到的风阻大小为 F = ki ( v – vi’ )^2(这样若在长度为s的路程内保持骑行速度v不变,则他消耗能量(做功)E = ki ( v – vi’ )^2 s)。
设蛋蛋在这天开始时的体能值是 Eu ,请帮助他设计一种行车方案,使他在有限的体力内用最短的时间到达目的地。请告诉他最短的时间T是多少。

输入输出格式

输入格式:
第一行包含一个正整数N和一个实数Eu,分别表示路段的数量以及蛋蛋的体能值。
接下来N行分别描述N个路段,每行有3个实数 si , ki , vi’ ,分别表示第 i 段路的长度,风阻系数以及风速。

输出格式:
输出一个实数T,表示蛋蛋到达目的地消耗的最短时间,要求至少保留到小数点后6位。

输入输出样例

输入样例#1:

3 10000
10000 10 5
20000 15 8
50000 5 6

输出样例#1:

12531.34496464

说明

【数据规模与约定】
对于10%的数据,N=1;
对于40%的数据,N<=2;
对于60%的数据,N<=100;
对于80%的数据,N<=1000;
对于所有数据,N <= 10000,0 <= Eu <= 108,0 < si <= 100000,0 < ki <= 1,-100 < vi’ < 100。数据保证最终的答案不会超过105。
【提示】
必然存在一种最优的体力方案满足:蛋蛋在每段路上都采用匀速骑行的方式。

题解

本题需要用到的数学姿势有:

  1. 偏导数:数学笔记:极限、导数、积分 | KSkun’s Blog
  2. 拉格朗日乘数法:拉格朗日乘数法及其应用 | KSkun’s Blog

其实这个题让我们求的就是f(v_1, v_2, \cdots, v_n) = \sum_{i=1}^n \frac{s_i}{v_i}的最小值,且要求\sum_{i=1}^n (k_i (v_i - v'_i)^2 s_i) \leq E_u。我们知道当不等式取等时肯定最优,则这个模型可以用拉格朗日乘数法求得极值。我们引入拉格朗日乘数\lambda,构建拉格朗日函数\mathcal{L}(v_1, v_2, \cdots, v_n, \lambda) = \sum_{i=1}^n \frac{s_i}{v_i} + \lambda(\sum_{i=1}^n (k_i (v_i - v'_i)^2 s_i) - E_u)。对这个函数求每一个未知数的偏导,最后得到的是方程组\frac{\partial \mathcal{L}}{\partial v_i} = - \frac{s_i}{v_i^2} + 2 \lambda k_i(v_i - v'_i)s_i = 0,整理得2 \lambda k_i(v_i - v'_i)v_i^2 = 1,观察得知这个式子左边的值关于v_i递增,故对于一个固定的\lambda可以二分求v_i。二分求v_i时,要考虑上下界的问题,上界可以任意,而下界要考虑,顺风的时候肯定是至少等于风速比较好,这样这一段做功就是0,而逆风的时候总不可能开倒车吧,因此只需要在风速和0之间取最大值即可。
下面考虑\lambda怎么搞,我们发现随\lambda增大,v_i减小,能量消耗减小,方案就越可能可行,因此可以考虑二分求\lambda

代码

// Code by KSkun, 2018/3
#include <cstdio>

#include <algorithm>

const int MAXN = 10005;
const double EPS = 1e-12, INF = 1e9;

int n;
double eu, s[MAXN], k[MAXN], u[MAXN], v[MAXN];

inline double calv(double x, int y) {
    double l = std::max(0.0, u[y]), r = INF;
    while(r - l > EPS) {
        double mid = (l + r) / 2;
        if(2.0 * x * k[y] * mid * mid * (mid - u[y]) <= 1.0) l = mid; else r = mid;
    }
    return l;
}

bool check(double x) {
    double nowe = 0;
    for(int i = 1; i <= n; i++) {
        v[i] = calv(x, i);
        nowe += k[i] * s[i] * (v[i] - u[i]) * (v[i] - u[i]);
    }
    return nowe - eu > EPS;
}

int main() {
    scanf("%d%lf", &n, &eu);
    for(int i = 1; i <= n; i++) {
        scanf("%lf%lf%lf", &s[i], &k[i], &u[i]);
    }
    double l = 0, r = INF;
    while(r - l > EPS) {
        double mid = (l + r) / 2;
        if(check(mid)) l = mid; else r = mid;
    }
    double ans = 0;
    for(int i = 1; i <= n; i++) ans += s[i] / v[i];
    printf("%.10lf\n", ans);
    return 0;
}
[SPOJ-QTREE6]Query on a tree VI 题解

[SPOJ-QTREE6]Query on a tree VI 题解

题目地址:洛谷:【SP16549】QTREE6 – Query on a tree VI – 洛谷、SPOJ:SPOJ.com – Problem QTREE6

SPOJ QTREE系列:

题目描述

You are given a tree (an acyclic undirected connected graph) with n nodes. The tree nodes are numbered from 1 to n. Each node has a color, white or black. All the nodes are black initially. We will ask you to perform some instructions of the following form:

  • 0 u: ask for how many nodes are connected to u, two nodes are connected if all the node on the path from u to v (inclusive u and v) have the same color.
  • 1 u: toggle the color of u (that is, from black to white, or from white to black).

给一棵树,最初点全是黑色的,操作:1.询问到u路径颜色相同的点有多少个2.改变颜色

输入输出格式

输入格式:
The first line contains a number n that denotes the number of nodes in the tree (1 ≤ n ≤ 10^5). In each of the following n-1 lines, there will be two numbers (u, v) that describes an edge of the tree (1 ≤ u, v ≤ n). The next line contains a number m denoting number of operations we are going to process (1 ≤ m ≤ 10^5). Each of the following m lines describe an operation (t, u) as we mentioned above(0 ≤ t ≤ 1, 1 ≤ u ≤ n).

输出格式:
For each query operation, output the corresponding result.

输入输出样例

输入样例#1:

5
1 2
1 3
1 4
1 5
3
0 1
1 1
0 1

输出样例#1:

5
1

输入样例#2:

7
1 2
1 3
2 4
2 5
3 6
3 7
4
0 1
1 1
0 2
0 3

输出样例#2:

7
3
3

题解

参考资料:【Qtree】Query on a tree系列LCT解法 – CSDN博客
本题还是可以用边分……等等这题边分我做不动了,用的LCT。
我们考虑搞两棵LCT对应黑和白色的点构成的树。这样其实查询就变成了某一棵树上的子树大小查询。这个可以用子树信息LCT方便地维护。具体来说,就是统计一下跟当前点相连的轻边子树大小和Splay子树大小加起来。access的时候边合并Splay边更新轻边子树大小即可。
但是如果改变颜色的时候强行切边,有可能被菊花图卡掉。我们考虑把原树拉成一棵有根树,只切该点和父亲的边,这样,这棵LCT就满足所有儿子肯定同色,但是这个父亲可以跟儿子不同色这样的性质。我们在统计答案的时候找到子树根,然后看看子树根是否和儿子的颜色一致,不一致就取儿子的答案即可。
有一个小优化,可以DFS建树,把原树的边建成LCT上的轻边就好。

代码

// Code by KSkun, 2018/3
#include <cstdio>
#include <cstring>

#include <algorithm>

inline char fgc() {
    static char buf[100000], *p1 = buf, *p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}

inline int readint() {
    register int res = 0, neg = 1;
    char c = fgc();
    while(c < '0' || c > '9') {
        if(c == '-') neg = -1;
        c = fgc();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = fgc();
    }
    return res * neg;
}

const int MAXN = 100005, INF = 1e9;

struct Edge {
    int to, w, nxt;
} gra[MAXN << 1];
int head[MAXN], ecnt, fa[MAXN], col[MAXN];

inline void addedge(int u, int v, int w) {
    gra[ecnt] = Edge {v, w, head[u]}; head[u] = ecnt++;
}

struct LCT {
    struct LCTNode {
        int ch[2], fa, siz, s;
        bool rev;
    } lct[MAXN];

    inline bool isleft(int p) {
        return lct[lct[p].fa].ch[0] == p;
    }

    inline bool isroot(int p) {
        register int fa = lct[p].fa;
        return lct[fa].ch[0] != p && lct[fa].ch[1] != p;
    }

    inline void update(int p) {
        register int ls = lct[p].ch[0], rs = lct[p].ch[1];
        lct[p].siz = lct[p].s + lct[ls].siz + lct[rs].siz + 1;
    }

    inline void reverse(int p) {
        std::swap(lct[p].ch[0], lct[p].ch[1]);
        lct[p].rev ^= 1;
    }

    inline void pushdown(int p) {
        register int ls = lct[p].ch[0], rs = lct[p].ch[1];
        if(lct[p].rev) {
            if(ls) reverse(ls);
            if(rs) reverse(rs);
            lct[p].rev ^= 1;
        }
    }

    int sta[MAXN], stop;

    inline void pushto(int p) {
        stop = 0;
        while(!isroot(p)) {
            sta[stop++] = p;
            p = lct[p].fa;
        }
        pushdown(p);
        while(stop) {
            pushdown(sta[--stop]);
        }
    }

    inline void rotate(int p) {
        register bool t = !isleft(p); register int fa = lct[p].fa, ffa = lct[fa].fa;
        lct[p].fa = ffa; if(!isroot(fa)) lct[ffa].ch[!isleft(fa)] = p;
        lct[fa].ch[t] = lct[p].ch[!t]; lct[lct[fa].ch[t]].fa = fa;
        lct[p].ch[!t] = fa; lct[fa].fa = p;
        update(fa);
    }

    inline void splay(int p) {
        pushto(p);
        for(register int fa = lct[p].fa; !isroot(p); rotate(p), fa = lct[p].fa) {
            if(!isroot(fa)) rotate(isleft(fa) == isleft(p) ? fa : p);
        }
        update(p);
    }

    inline void access(int p) {
        for(register int q = 0; p; q = p, p = lct[p].fa) {
            splay(p);
            if(lct[p].ch[1]) lct[p].s += lct[lct[p].ch[1]].siz;
            if(q) lct[p].s -= lct[q].siz;
            lct[p].ch[1] = q;
            update(p);
        }
    }

    inline void makert(int p) {
        access(p);
        splay(p);
        reverse(p);
    }

    inline int findrt(int p) {
        access(p);
        splay(p);
        while(lct[p].ch[0]) p = lct[p].ch[0];
        return p;
    }

    inline void link(int u) {
        access(fa[u]);
        splay(fa[u]);
        splay(u);
        lct[fa[u]].ch[1] = u;
        lct[u].fa = fa[u];
        update(fa[u]);
    }

    inline void cut(int u) {
        access(u);
        splay(u);
        lct[u].ch[0] = lct[lct[u].ch[0]].fa = 0;
        update(u);
    }

    inline int query(int u) {
        int c = col[u];
        u = findrt(u);
        splay(u);
        return col[u] == c ? lct[u].siz : lct[lct[u].ch[1]].siz;
    }
} L[2];

inline void dfs(int u, int f) {
    for(int i = head[u]; ~i; i = gra[i].nxt) {
        int v = gra[i].to;
        if(v == f) continue;
        fa[v] = L[0].lct[v].fa = u;
        dfs(v, u);
        L[0].lct[u].s += L[0].lct[v].siz;
    }
    L[0].update(u);
}

int n, q, ut, vt, op;

int main() {
    memset(head, -1, sizeof(head));
    n = readint();
    for(int i = 1; i < n; i++) {
        ut = readint(); vt = readint();
        addedge(ut, vt, 1);
        addedge(vt, ut, 1);
    }
    dfs(1, 0);
    q = readint();
    while(q--) {
        op = readint(); ut = readint();
        if(!op) {
            printf("%d\n", L[col[ut]].query(ut));
        } else {
            if(fa[ut]) {
                L[col[ut]].cut(ut);
                L[col[ut] ^ 1].link(ut);
            }
            col[ut] ^= 1;
        }
    }
    return 0;
}